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1. INTRODUCTION

Many communications systems convert analog input sig-

nals into digital signals for processing and transmission. An

encoding scheme widely used for the transmission of digital sig-

nals is PCM, which has received considerable interest since its

invention in 1939. Such encoding generally involves sampling the

time signal at a uniform rate and encoding the samples in a bi-

nary code which provides an adequate number of quantizing levels,

selected in accordance with an appropriate law, to maintain a re-

quired signal-to-noise ratio. Such techniques have been applied

to voice, image, and other signal waveforms, such as telemetry

and biomedical data. In general the method used has been one in

which the Nyquist sampling rate is the criterion used for estab-

lishing the density of samples in the time domain, and the number

of quantization levels is determined by rate-distortion criteria,

such as mean-squared error. Other distortion criteria, such as

articulation index (AI) for voice, and just noticeable differ-

ences (JND) for both voice and image, have also influenced the

ultimate transmission rate requirements. The latter criterion,

of course, implies the use of subjective criteria for the rate-

distortion functions.

Conventional PCM techniques require high bit rates in

order to transmit the signals, such as television and speech,

with a given level of distortion. Reduction of the bit rate re-

quired for the transmission of a speech or television channel is

possible through proper coding of the coefficients obtained from

a suitable orthogonal transform of the signal. The amount of

success achieved thereby depends on the suitability of the trans-

formation for representing the signal. The relative complexity

of the implementation with respect to other existing techniques

is an important factor that should be considered. The overall

1-1
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performance can then be judged by using the conventional PCM as

a basis for comparison.

Numerous orthogonal transformations for signal process-

ing are conceivable; however, certain ones appear more appro-

priate than others because the intrinsic form of the members of

the orthogonal function set appears to closely resemble the func-

tion to be modeled and because of the simplicity of generating

the member functions and determining the function coefficients.

The orthogonal transforms considered in this study are discrete

versions of Fourier, Walsh (Hadamard), Haar, and Karhunen-Lobve

transformations.

Orthogonal transformation techniques have been sug-

gested by a number of investigators; these techniques are now in

various stages of development. A bibliography of works concern-

ing applications to image processing is included as Section 7.6.

Kramer and Mathews suggested the use of a linear transformation

(based on the eigenvectors of the covariance matrix of a set of

signals, i.e., Karhunen-Lobve transformation) for transmitting a

set of correlated signals, with specific application to informa-

tion rate reduction of a channel vocoder.1 Kulya applied such a

technique to vocoder parametric control signals in his orthogonal

vocoder.2 Crowther and Rader have applied the Hadamard transfor-

mation to the information rate reduction of vocoder signals.

Huang and Schultheiss described the development of the discrete

version of the linear transformation technique which was the

basis for the Karhunen-Lobve transform method used in this

investigation.4

Other techniques such as DPCM are available for accom-

plishing bit-rate reduction for the transmission of speech and

television signals. Linear orthogonal transformation and predic-

tive coding methods are compared in a paper by Nitadori.s

1-2



COMSAT Labs Technical Report
CL-TR-5-71

In this study, the application of various orthogonal

transformations has been investigated, with particular emphasis

on speech and visual signal processing. In the sections that

follow, the fundamentals of the one- and two-dimensional orthogo-

nal transforms (Sections 3 and 5) and their application to speech

and visual signals (Sections 4 and 6) are treated in detail.

Summary and conclusions for the speech and visual signal applica-

tions are given in Sections 4.10 and 6.7, respectively.

1-3/1-4
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2. RATE-DISTORTION CRITERIA

2.1 GENERAL RATE-DISTORTION CRITERIA

The exact transmission of data from analog sources

requires a channel of infinite capacity. Transmission with infi-

nite fidelity is impossible since no physical channel has infi-

nite capacity. If, however, some error or distortion is allowed

in the representation of source output by a discrete random vari-

able, then a finite information rate is obtained whose value de-

pends on the amount of distortion allowed.

The relationship between allowable distortion and the

maximum rate (in bits per source symbol) which can theoretically

be obtained over a channel with capacity C (in bits per second)

was first formulated by Shannon as the rate-distortion function,

R(D). The rate-distortion function can be interpreted as the

minimum average number of bits which may be used for encoding

data to be transmitted from a source (which has given probability

distributions) with successive, statistically independent symbols

without causing the average distortion to exceed D. Multiplying

by the number of samples per second, R(D), yields the minimum bit

rate required to transmit the source signal subject to the dis-

tortion, D. Then, for any source-channel pair, the quantity R(D)

< C can be used to determine the minimum error achievable for

a certain rate without specifying a particular communication

system.

Numerous papers have applied the theory of Shannon's

rate-distortion function in comparing the performance of various

digital transmission systems. A rather complete bibliography is

included as Section 7.1. The usefulness of this theory is lim-

ited because it is difficult to find accurate mathematical models

2-1
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for real random processes (such as speech and video signals) and

to evaluate the rate-distortion function for any but simple

sources. Selection of the distortion measure D is critical in

obtaining a meaningful rate-distortion function.

2.2 RATE DISTORTION FOR A DISCRETE MEMORYLESS SOURCE

To gain a further understanding of the rate-distortion

function, the rate-distortion function for the discrete memory-

less channel will be discussed in the following paragraphs. It

should be recognized that this function is not strictly applica-

ble to either the speech or visual channel and is presented only

as an example.

The rate-distortion function for a discrete memoryless

source is defined as follows by Gallager. 6 Consider a discrete

memoryless source with the alphabet (0, 1, . . , K - 1) and let-

ter probabilities Q(O), . . ., Q(k - 1), K < a. The source out-

put is a sequence Vl, P 2, . ., of independent values selected

from the source alphabet. The source sequence is represented at

the destination by the sequence v1, v2 , . . ., selected from an

alphabet (0, 1, . . ., j - 1), J < a. A distortion measure

D(j;k) is defined for 0 < k < K - 1. If source letter k is re-

constructed at the receiver as letter j, 0 < j < J - 1, which as-

signs a numerical value to the distortion. The total distortion

between the source sequence P,a . ., N and destination se-

quence vl, . . , vN is simply

N

, D(l(n;Vn)
n=l

2-2
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As an example of a distortion measure, let J = K and

D(k;J) = 0 for j = k, and let J # K and D(k;j) = 1 for j # k.

Such a measure is useful for cases in which all errors are

equally serious. Another example is the familiar squared error

distortion measure defined by letting D(k;j) = (j - k) 2 for all

values of j and k.

In order to define the rate-distortion function, con-

sider a set of transition probabilities P(j/k) which are deter-

mined by the channel characteristics and all of the processing

performed between the source and the destination. P(j/k) is the

probability of receiving the letter j at the destination if the

source letter was k. These probabilities along with the source

probabilities determine the average mutual information:

K-1 J-1

I(Q;P) = E Q(k) P(j.) 1n P(j/k)

k=0 j=0 E Q(i) P(j/i)

i

The average distortion is given by

D = L Q(k) P(j/k) d(k;j)

k j

If the maximum allowable value of D is equal to D* (the

fidelity criterion), then the rate-distortion function of the

source relative to the given distortion measure is defined as

min
R(D*) = P:D<D* I(Q;P)

where the minimization is over all assignments of transition

probabilities subject to the constraint that D < D*.

2-3
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Rate-distortion theory is clearly applicable to the

familiar problems of analog-to-digital conversion and data rate

compression. In practice, the application is difficult because

mathematical characterization of important sources such as speech

and image signals is not an easy task. Moreover, the formulation

of meaningful mathematical distortion measures for such sources

has not been accomplished. Despite these complexities, rate-

distortion theory does provide some valuable insights into the

evaluation of system performance.

2.3 APPLICATION TO SPEECH AND VISUAL SIGNAL PROCESSING

Mean-square error (MSE) is used by numerous investiga-

tors because it is relatively simple to compute and sufficiently

meaningful. If MSE is taken for D, then, roughly speaking, the

function Rx(D) is the minimum rate at which information can be

received about signal x to reproduce this information with a

mean-square error per symbol equal to D.

The use of the mean-square error is common in the case

of speech; it has also been used to evaluate the relative perfor-

mance of various coding systems, such as PC11 and Delta modula-

tion. However, some investigators feel that mean-square error is

not entirely satisfactory for speech and have resorted to theo-

retical computation of the measure known as articulation index

(AI) and to subjective assessment in terms of PB words, rhyme

tests, or message texts. Articulation index is more difficult to

compute than mean-square error, but it has the advantage of being

related to sentence and word intelligibility.* For evaluation of

*The method of AI computation is described in fairly good detail
in Reference 7, pp.3-5 to 3-12. We have used this method for
evaluating the theoretical intelligibility performance of FM,
PCM, and DM systems. Results obtained have closely corresponded
to those of subjective evaluations.

2-4
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performance of speech processing methods, it is recommended that

computed MSE be used as the principal computed rate-distortion

criteria. In order to provide a measure of the effectiveness of

types of processing, the MSE of these types of processing will be

compared with the MSE computed for conventional companded PCM

processing at the same bit rate.

The selection of a suitable distortion measure to eval-

uate image processing systems is more difficult. It has been

shown that simple application of mean-square error as a perfor-

mance measure for image quality has some limitations. Heuristi-

cally, this is easy to see if one considers that errors which

affect edges or contours of pictorial data are much more disturb-

ing than errors which affect portions of an image with little or

no activity.

The introduction of peak error as a performance crite-

rion for image data may be a better choice, but is again not

totally satisfactory. Alternatively, some investigators have

suggested that frequency-weighted rms error should be used for

PCM processing. However, since a more suitable quantative dis-

tortion measure for image signals has not yet been established,

it was decided to employ the MSE criterion for determining the

relative performance of each technique in terms of signal-to-

noise ratio. It is not expected that the use of other criteria

would alter the ranking achieved by using the MSE criterion. As

in the case of speech, the effectiveness of the orthogonal pro-

cessing was gauged by comparing the MSE obtained with the MSE of

conventional linear PCM processing. In addition, critical ob-

server tests were performed on the processed image in order to

determine the relative image quality produced by the Fourier,

Hadamard, and Karhunen-Lowve transformations.

2-5/2-6
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3. ORTHOGONAL TRANSFORMATION TECHNIQUES FOR ONE DIMENSION

3.1 GENERAL

As stated previously, numerous orthogonal transforma-

tions for signal processing are conceivable; however, certain

ones appear more appropriate than others because the intrinsic

form of the members of the orthogonal function appears to closely

resemble the function to be modeled and because of the simplicity

of generating the member functions and determining the function

coefficients.

In this study, the Fourier, Hadamard, Haar, and

Karhunen-Lobve orthogonal transformations are investigated. Ex-

cept for the Karhunen-Lobve transformation, these orthogonal

transformations are predetermined in terms of members of the

orthogonal function set. The Karhunen-Lobve method yields an

orthogonal function set that optimally expresses the information

content of the signal. Thus, its orthogonal function set is not

predetermined, but is instead determined from the autocovariance

matrix of the signal to be represented. Consequently, of the

methods tested, the Karhunen-Lobve method should and does yield

the lowest MSE for a given information rate.

Each of the transformations is discussed in detail in

the following paragraphs; their application to speech signal pro-

cessing is discussed in Sections 4 and 5.

3.2 THE DISCRETE FOURIER TRANSFORM (DFT)

The operation of the discrete Fourier transformation

may be described as follows:

3-1
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f = FNs

S = (so, s, .. . SN_1 ) T

f = (for f, . . ., fN-1) T (3-1)

where s
i

(i = 0, 1, . . ., N - 1) are the speech samples, fi rep-

resents the Fourier-transformed samples, and FN is the Nth-order

discrete Fourier transform matrix.

The discrete Fourier transform {f} and its inverse for

a real-valued sequence {s} of length N are defined* by

N-1

fj = E s k e -i ( 2 7j k ) / N

k=0

N-1

Sk = 1 E fje+i(2 7jk)/N

j=0

, (j = 0, 1, . . , N- 1)

, (k = 0, 1, . . ., N - 1)

When W is substituted for i(2r/N), equations (3-2) and (3-3) take

the familiar form of the discrete Fourier transforms:

N-1

fJ = SkW-jk
k=0

(3-4)

*The definitions of the "discrete Fourier transform" are not uni-
form in the literature. Some authors use fj/N as the discrete
Fourier coefficients, some use 1/v/N in equations (3-2) and
(3-3), and others use a positive exponent in equation (3-2) and
a negative exponent in equation (3-3).

3-2

(3-2)

(3-3)
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N-l
sk -1 1 fjW +

j kSk = N E fiW+ik (3-5)
j=O

It should be noted that, although {s} is a real-valued

sequence of length N, {f} is a complex-valued sequence of the

same length. The complex sequence {f} can, however, be written

in terms of a real-valued sequence {f'} of length N by noting

that f0 and fN/2 are purely real and that

f* N
fNj = fj, (j = 1, 2, . .. , - 1)

where fj denotes the complex conjugate of fj. This statement can

be proven simply by using equation (3-4). Since W
'
= 1,

N-1

° E k (3-6)

k=0

and since W- kN/2 = (-l)k

N-1

fN/2 = (-l)k sk (3-7)
k=0

N-1

fN-j = skW+jk A f (3-8)

k=0

and WNk = 1 for all k.

3-3
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Rewriting equation (3-5) in terms of equations (3-6)

and (3-7) results in

(N/2)-1

j=l
Sk = 1 f0 + (-1 ) fN/2 + fjw+jk +j

N-1

j=(/E 2 fjW+ j k (3-9)

j= (N/2)+1

Next, it can be observed that

(N/2) -1

,=1

fjw+jk = fN- W + (N- )k

N-1

j= (N/2)+1

which can be rewritten as

(N/2) -1
* +Nk _kk

E fw+Nk . w -
Q=1

(N/2) -1

,=1

fW - k

by using equation (3-8). Thus, equation (3-9) can be rewritten

as

(N/2)-1

j=l
Sk = j f0 + (- 1)k fN/2 + [fjW+ j k + f*W-j k] (3-10)

and

(N/2) -1

j=l

Sk = N f0 + (- 1) fN/2 + 2 Re[fjW+jk] I

where Re[.] denotes the real part of the complex quantity fjW+jk
J

3-4
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Finally, the real sequence {f'} of length N is defined

as follows:

f' = f
0 0

f2j-1 I I N
2fj 1 { Im fj) 5 j = (1, 2, . .. ,2 1)

f~j = -Imrfj

fk-1 = fN/2 (3-12)

The inverse Fourier transform can then be written in terms of the

sequence {f'} as

(N/2)-1l

s f; + (_l)k flN- + j_ cos (6jk)
j=l

+ fj sin (6k) (3-13)

where 6 = 27/N.

If the sequence {f'} is transmitted instead of the sig-

nal sequence {s}, the signal can be reconstructed at the receiv-

ing side by applying the inverse Fourier transformation of

equation (3-13) to {f'}. The reconstructed signal {s} differs

from the original signal {s} because of the quantization errors

and the error caused by the channel. Because of the averaging

property of the transformation, it may be suspected that trans-

formation of the Fourier-transformed speech instead of the speech

signal itself provides enhanced toleration to channel errors. It

will be shown that the signal-to-quantization noise ratio is also

improved.

The fast Fourier transform algorithm is an efficient

method for computing the discrete Fourier transform,

3-5
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N-1

fj = E sk exp(-i2rjk/N) (3-14)
k=0

for j = 0, 1, . . ., N - 1, where {f} and {s} are generally

complex-valued. The basic idea is to factor N, i.e.,

m

N = Ni

i=l

and to then decompose the transform into m steps with N/N
i
trans-

formations of size N
i
within each step. This idea was first pro-

posed by Cooley and Tukey. 8

Numerous subroutines based upon modifications of this

algorithm have been published in recent years. Most of these

have dealt with the special case N = 2 n . The computation time

required by a well-written subroutine based upon this algorithm

is approximately proportional to NENi. If equation (3-14) were

programmed directly, the required computation time would be pro-

portional to N 2 . Since, for large N, EN
i

<< N, the computation

time is reduced considerably. For example, if N = 1024, the fast

Fourier transform can be computed in about two percent of the

time required by a direct computation.

The subroutine used here is that of R. C. Singleton.9

It is based upon a mixed-radix algorithm which makes it possible

to compute the discrete Fourier transform for any arbitrary

length sequence; i.e., N is not restricted to 2 n . Because the

FFT is discussed thoroughly in Reference 9, no further discussion

is included here.
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3.3 THE DISCRETE WALSII-HADAMARD TRANSFORM (DWT)

3.3.1 Hadamard Matrices

The Hadamard matrix is a square array of plus and

minus l's whose rows (and columns) are orthogonal to one an-

other.l °, l 1 2 If HN is a symmetrical Hadamard matrix of order

N, then

HNHN = NIN (3-15)

where IN is the identity matrix of dimension N. In a symmetrical

Hadamard matrix, it is possible to

(a) interchange rows,

(b) interchange columns,

(c) change the sign of every element in a row, or

(d) change the sign of every element in a column

without affecting the orthogonality properties of the matrix.

These operations make it possible to achieve a symmetrical

Hadamard matrix whose first row and first column contain only

+l's. The matrix thus obtained is called "normal form" for the

Hadamard matrix and is equivalent to all the other matrices that

can be obtained from it by using these basic operations. How-

ever, it should be noted that the normal form is not unique

within an equivalence class. Further, there is more than one

equivalence class of Hadamard matrices of a given dimension N,

N > 16.

3-7
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The lowest order Hadamard matrix is of the order two;

i.e.,

H2= 1 ]

The existence of Hadamard matrices of all possible dimensions is

an unsolved problem in mathematics. However, it is known that,

if a Hadamard matrix of order N exists (N > 2), then N E (Mod 4);

i.e., N = 4, 8, 12, 16, . . .. The construction of high-order

Hadamard matrices is easier if the order is restricted further to

powers of two (N = 2 n). From now on, only symmetrical Hadamard

matrices in normal form and of dimension N = 2, 4, 8, 16, 32, 64,

. . ., will be considered in this report. These high-order

Hadamard matrices can be generated recursively by using Kronecker

products.*,0'O 1
2 l1 3 The recursion starts with H2 . In the

*For two matrices A(ai ) and B, the Kronecker product A x B is
defined as: A x B = (aijB). For example, if

ab1l b1 2

A U B : bBb22 

then3 b2 3

then

allb 1 2 al2 bbl allb 1 2 a1 2b 1 2

a2 lbl a2 2bll a2 lbl2 a2 2b 1 2

albl2 al2bl2 a1 1 b2 2 al2 b2 2
Ax B=

a2 1b 1 2 a2 2bl2 a2 1b2 2 a2 2 b2 2

a l lb 1 3 a 12b 13 allb2 3 a1 2b2 3

a21 b1 3 a2 2bl 3 a2 1b2 3 a2 2b2 3

(continued on next page)
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following matrices, the elements of the matrices will be denoted

only as ± instead of ±1.

H2( :)

!+

(H2 H 2 \ +

H4 = H2 x H2 =- =
2 H2 +

+

+ + +

_ _ +

No. of Sign
Changes

0

1

No. of Sign
Changes

0

3

00

11

1 01

2 10

No. of Sign
Changes

(3-16)

(3-17)

_ + + + + + + + 0 000

+ - + - + - + - 7 111

+ + - - + + - - 3 011

+ - - + + - - + 4 100
H8 = H 2 x H 4 = (3-18)

+ + + + . . . . 1 001

+ - + - - + - + 6 110

+ + + + 2 010

+ - - + - + + - 5 101

The Kronecker product can be combined with matrix multiplication
through the formula,

(A x B)(C x D) = (AC) x (BD)

if the dimensions of the matrices are compatible.
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In general, the Nth-order Hadamard matrix is generated

from HN/2 as

HN = H 2 x HN/2 =

(HN/2 HN/2
/

HN/2 -HN/2/

which can be written as

(3-19)

(3-20)

n n

HN = TV (I2n_1 x H 2 x H2i-) = hi
i=l i=l

from References 12 and 13, where

n = log2 N (or N = 2n )

h
i

= I2n-l x H2 x I2i-l , i = 1, 2, 3, . . ., n

Ik A k x k = identity matrix

The proof of equation (3-20) is done by iteration.

Note that HN in equation (3-19) can be written as

H HN/2
HN =

O

0 \ N/2 IN/2\

I J ~= (12 X HN/2) (H 2 X IN/2)

HN/2/ \IN/2 IN/2/

where

/HN/4

HN/2 = HN/4

~HN/4

HN/4

0

O \ /IN/4 IN/4\

HN/4/\IN/4 -IN/4/

= (I2 x HN/4) (H2 X IN/4)

3-10
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Equation (3-21) can be written as

HN = [I2 x (I2 x HN/4)(H2 x IN/4)](H 2 x IN/2)

= (14 x HN/4)(I2 x H2 x IN/4)(H2 x IN/2) (3-22)

where

HN/4 = (i2 x HN/8) (H2 X IN/8)

and equation (3-22) can be written as

HN = (I8 x HN/8)(I4 x H2 x IN/8)(I2 x H 2 x IN/4)

x (H2 x IN/2) (3-23)

If we continue in the same manner with

IN/4 x H 4 = IN/4 x (I2 x H 2 )(H2 x I2)

= (IN/2 x H 2 )(IN/4 X H2 x I2)

equation (3-23) can be further expanded as

HN = (IN/2 x H 2)(IN/4 x H2 x I2)(IN/8 x H 2 x I) . . .

hi h2 h3

x (14 x H 2 x IN/8)(I2 x H2 x IN/4)(H2 x IN/2) (3-24)

hn_l hn

where the 1st, 2nd, 3rd, ...., nth terms are the hi, h 2, h 3,

. . ., hn of equation (3-20), respectively. Equation (3-20) is

thus a compact form of equation (3-24).
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Further examination of equation (3-20) shows that it is

the product of n = log2 N terms, which are symmetric square ma-

trices of dimension N. Any row (or column) of these matrices has

only two non-zero entries of either +1 or -1.* There are N add

operations in each matrix, giving N log2 N algebraic operations.

In Section 3.3.2 a different form of equation (3-20)

will be derived. It will be shown that, although the algorithm

for this new form does not result in a reduction of the number of

basic operations, it is especially suitable for programming and

implementation purposes. Before the new algorithm is explained,

however, sequency should be considered. Sequency (Reference 14,

p. 50) is closely related to the number of sign changes along

each row of the Hadamard matrix. If the number of sign changes

along a row is i, the sequency of the Walsh function1 5 corre-

sponding to that row is given by

i/2 if i is even

j=

i + 1 if i is odd

*For example, for N = 8, n = 3, equation (3-24) yields

H 8 = (I4 x H2 ) (I2 x H2 x I2)(H2 x I4)

+ + . . . + + . . . . + ·· . + · · 
+ ...... .+ + .* * .+ . + + + * 

* . ++ . -.. . . . + . * * + ·

= * . .+ _ . ... .+ . * * +
* * * · + + . . . . + · + · . . - .· _

* . .+ .. + _ . .* + + * . . .

* * * * * * + + * * * * + * - * * * + * . _ -

. . . . + - . . . + * - * · + * * 

which, when multiplied, gives H8 of equation. (3-18) (Figure 3-1
is the flow chart for H8 .)
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0

1

2

3

4

5

6

7 - - -- - - - - - - - - - -

H2 X 1 12 X H2 x 12 H2 x 14

Figure 3-1. Flow Chart for H 8

The rows of the Hadamard matrices developed by using

equation (3-20) are in "natural" order. This is shown for H2,

H4 , and H8 in equations (3-16) through (3-18). The number of

sign changes in any row is given in decimal and binary form on

the right of the matrices. The rows can be rearranged to achieve

sequency ordering. Such a Hadamard matrix would be denoted as

HN, where the superscript W denotes Walsh. As an example, the

Walsh functions corresponding to the rows of the matrix HW will

be given next:
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No. of
Sign
Changes

(i)

Se-
quency

(j)
Walsh

Functions

+ + + + + + + +

+ + + + . .

+ + + +

+ + - _ + +

+ - _ + + - _

+

+

_ _ + - + +

+ - + - _ + +

+ - + - + - + -

0

1

2

3

4

5

6

7

0 wal(0,x) or cal(0,x)

1 wal(1,x)

1 wal(2,x)

2 wal(3,x)

2 wal(4,x)

or sal(1,x)

or cal(l,x)

or sal(2,x)

or cal(2,x)

3 wal(5,x) or sal(3,x)

3 wal(6,x)

4 wal(7,x)

or cal(3,x)

or sal(4,x)

The functions wal(i,x) are orthonormal in the interval

0 < x < 1 and can be generated by a difference equation or as the

product of linear functions. These functions can be divided as

even functions [cal(j,x)], odd functions [sal(j,x)], and as the

constant 1 or wal(0,x). The first eight Walsh functions are

shown in Figure 3-2. The N x N Hadamard matrix defines N Walsh

functions: j = 0, 1, 2, . . ., N - 1. The corresponding sal and

cal functions are

cal(j,x) = wal(2j,x) ,

sal(j,x) = wal(2j-l,x),

j = 0, 1, 2, . . ., (N/2 - 1)

j = 1, 2, . . ., N/2

Reference 11 gives a computational algorithm for an

ordered Hadamard transform; this algorithm1 6 has the same number

of operations (N log 2N) as any other "fast" Hadamard transform1 2

and yields the Hadamard matrix in natural order.
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+1

, o0x) - vol (0. X)

0 INX) ' Wlel (O. X.

,, 1(X) -'el (1, x)

,2(1)(x) - wal (2. x)

, 2(2)(x) - wal (3. x)

P3(1)(x) W- wal (4. x)

¢p3(2)(x) - wal (5, x)

3(3)(x) - wsl (6, x)

93(4)(x) - wal (7. x)
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I I

-1
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I I
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-o c
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Figure 3-2. Walsh Functions
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3.3.2 A Computational Algorithm for Hadamard Transform1
6

For the purpose of parallelism, the difficulty with

equation (3-20) is that H2 occurs in different locations in the

various terms of the product. Therefore, it must be determined

whether there is a permutation operator, P, such that

P-, = P (3-25a)

PN(I2 x QN/2) PN1 = QN/2 x 12 (3-25b)

or

PN N/2 (12) PN = 12 X QN/2 (3-25c)

PN = pNn = IN (3-25d)

where QN/2 is a square matrix of dimension N/2, and n = log2N.

The behavior of the product operator in an arbitrary vector in-

dicates that a possible choice for P is the "ideal shuffle"

matrix. 13 The particular type of ideal shuffle matrix used in

the algorithm is defined by

PN ' cOl(x,' x, (N/2) ' XN/2)-l XN-1)

= col(x0, XN/21 xl, X(N/2)+l, .. ., X(N/2)-l, XN_1) (3-26)

where x0, xl, . .., XN_
1
are the columns of the Nth-order

Hadamard matrix in natural order.

3-16



COMSAT Labs Technical Report

CL-TR-5-71

Theorem: If PN is an "ideal shuffle" permutation ma-

trix which satisfies the conditions given by equation (3-25),

then equation (3-20) takes the form

HN = (ANPN)n = (PNBN)n (3-27)

where

AN = IN/2 x H 2

BN = H2 x IN/2

Proof: Let QN/2 = IN/4 x H 2 and note that

I2 x QN/2 = IN/2 
X

H2 = AN (3-28)

Next, it will be shown that the matrices A,-') (PNAPN), (PNAPN2 ),

., (P-AP(n-l)) are equal to the 1st, 2nd, 3rd, . . ., nth

terms of equation (3-24), respectively. From equation (3-28),

AN = IN/2 x H2 = h 1 (3-29a)

Using equation (3-29a) and (3-25b) results in

PNANPNI = PN(I2 /2) QN/2 = QN/ 2 I2 = IN/4 X H2 x I = h

PNANPN2 = PN(PNAPN) PN (3-29b)

From equation (3-29b),

PANPN2 PN(QN/2 2 I) PN PN(IN/4 2 x 12) N
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which can be rewritten as

PANPN2 = PN(I 2X Q/2) N

where

QN/2 = IN/8 x H 2 X I2

is also a square matrix. Reapplying equation (3-25b) results in

Finally,

PNANPN2 = QN/2 x I2 = IN/8 x H2 x I4 = h3

P(n-l)ANP-(n-l) = H2 IN/2 hn

These results can be used to rewrite equation (3-24) as

HN = h h2 , · . ., hn

=- .AN PN p pANP 2 . . . (n-2 )A P-(n-2 )
= AN ' PNANPN N N N N

p(n-l)A (n-l)
N NPN

= (ANPN)n . pNn

where, according to equation (3-25d), P n = IN; hence, equa-

tion (3-27) is obtained. The second form of equation (3-27) can

be proven similarly by using BN (instead of AN) and the property

of PN given by equation (3-25c).

3-18
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Examples of "ideal shuffle"

* * 

* + 

+ *

* * +

P 8 =

+ ·

* +

* 0

* 0

*

*

permutation matrices are

* * + * . .

* * * + . S

(3-30)
+ . " .

* * * * +

* + * * *

* * * * * +

where + denotes +1 and, as usual, the dots denote

The flow chart of P8 (Figure 3-3) shows that P8 =

Pe Pe

zero entries.

I 8 .

Ps

Figure 3-3. Flow Chart of the Cascaded Shuffle Matrix
for N = 8 Showing that P8 = I8
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For N = 8,

A 8 = I4 x H 2 =

A 8 = H 2 x I4 =

A8 P8 = P 8 B8 =

+

+

+

+

+

+

I

I-

+ * *

_ . * *

* + + 0

* + _

* * * +

* * * +

* . * p

* * * p

* * * +

+ . .*

* + * p

* * + v

* . . _

+ * p

* + .

* * + p

* * * +

* . . _

+ * *

+ * p p

* + * p

* + . p

* . + p

* * + 

* a

* p

* +

* +

+ 

* +

- a

+ -

* +

+ -

* +

* p

-I

t 

+

+

+
m

+

g
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When computed, (A8 P8 ) 3 and (P8 B8 ) 3 yield H8 of equation (3-19).

Figures 3-4a and 3-4b are the flow charts for A8 P 8 and P B 8 .

0

1

2

3

4

5

6

7
A8 P8

Figure 3-4a. Flow Chart for A8 P 8

0 -- -_

1

2

3

4

5

6

7 - ----

P8 B8

Figure 3-4b. Flow Chart for P8B 8
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3.4

3.4.1

COMSAT Labs

THE DISCRETE HAAR TRANSFORM (DHT)

Haar Functions

Haar functions' 7-20 are a complete set of orthonormal

periodic functions defined on the interval [0,1]. A few of the

lowest order Haar functions are shown in Figure 3-5.

x,%t)

-I 

x goIM1,' t

ziS

X,3lt

x'41t)3

Figure 3-5. Haar Functions

Haar functions can be represented by the orthonormal

Haar matrix. As an example, the following orthonormal 8 x 8 Haar

matrix, where the dots represent zeros, is presented.
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i = 1

i = 2

i = 3

Hs = (3-31)
2 -2 *

* * 2 -2 .
i = 4

. .* . . 2 -2 * 4

. . . . . * 2 -2

The Haar coefficients [ah(0), ah(l), . . ., ah(N - 1)]

corresponding to a signal vector s = [so, s, .* * *. SN-1] can be

computed from the following matrix relationship:

ah 1 N(3-32)
h= n J HNs

where ah is the Haar coefficient vector, HN is the N x N Haar

transformation matrix, and N is a power of two; i.e., N = 2n

n = 1, 2, 3, 4, .. .. It should be noted that the first coeffi-

cient, ah(O), is the average value of N signal samples. The

coefficient ah(l) is the same as the sal(l,x), 0 < x < 1, coeffi-

cient in Walsh function analysis.'6 The rest of the coefficients

do not bear such a one-to-one resemblance to the Walsh or Fourier

coefficients, but they can be obtained as a linear combination of

these coefficients.

The N x N Haar matrix can be written by inspection of

the H8 or directly from the definition1 5 of Haar functions:

Xo(x) = 1, 0 < X < 1

1, 0 < x < 1/2
X (x) = 1

-1, 1/2 < x < 1

3-23
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k -< 1 2k ,- 1 k = 1, 2, 3, . . 2 n-l
2n - 1 2 r

~ )(x)c = _ 2T, 2k - , k
,Xnk)= k < x < , n- = 1, 2, 3, . . .,

2 2

0 0 <x< or k x<l
2 n-l 2 n-1

The following matrices are 4 x 4 and 16 x 16 Haar matrices,

respectively. Again, the dots represent zeros and c = 2/7.

1 1 1 1

1 1 -1 -1
H4 =

· . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 - -1 -1 -1 -1 -1 -1 -1 -1

2 2 -2 -2 . . . . . . . . . . .

* * * * 2 2 -2 -2 . . . . . . .

. . . . . 2 2 -2 -2 * * * *

. . . . . . . . . . . * 2 2 -2 -2

* * * * C -C * 

. . . * * * * * C -C * * * * * a

* * * * * * * * * * C -C * * * *

* * * * * * * * * * C -c 
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It should be observed that the first row in HN results

in the average value of N samples, and that this value is the

same in Walsh-Hadamard or Fourier expansions. The rest of the

rows can be divided into log2 N groups, as shown for H8 . This

observation is used in developing the Haar transform algorithm.

3.4.2 Haar Transform Algorithm

Andrews and Caspari2 1 have given a factorization of H8 .

A different algorithm for the computation of Haar coefficients in

Fortran IV follows. In this program, X and Y are the input and

output arrays, respectively, and LOGN = log2N.

SUIJ8RFUTINF RH~AR(X,Y,LCGN!
DIMENSInN X(1),Yv()
N= 2**L.nGN
SUM:= O.
OQ 10 I=l,N

10 SU u = SIJM+X(I )
Y{ II= SUM/FLCAT(N !
00 30 T=I,LOGN
NJ= 2** (-1)
41= SQRT(FLOAT(NJ )
DN= AT/FLOLAT(N)
N{= 7m( LPGN - [+ 1
NHI= NI/2
NH41= NHI-1
DO 30 J=l,NJ
J1= J-I
L= NJ+J
KO= JI*N I
S1"1= X( 1+KD)-X(N I+KO)
IF(NHIoFQ.O) GC TC 3O0
00 20 K=I,NH1

20 SIJM= SIJM+X( K+I+Kr) -X( K+NH I+KD)
30 Y(L)= SUM*DN

R FT U R N
FNn
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The input is the array of N consecutive time samples of

the signal x(t), i = 1, 2, . . ., N. The output is N Haar coef-

ficients; i.e., ah(O), ah(l), . .., ah(N - 1) and the square

magnitudes of the Haar coefficients are ah(i), where i = 0, 1,

. ., N - 1.

3.4.3 Inverse Haar Transformation

The N x N Haar matrix, HN, and its transpose, HTN, sat-

isfy the following relationship:

HNHN = N IN (3-34)

where IN is the N x N identity matrix. This means that the in-

verse Haar matrix is equal to the transpose of the Haar matrix

except for a factor of 1/N. That is,

HN N HN

For example, it can be seen that,

inverse is

-1 = 1H4 -4 

1

for H4 in Section 3.4.1, the

1 * ·1

1 1 -/2 

1 -1 * Z

1 -1 · /Z
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For the Haar conefficients ah(i) (i = 0, 1, . . ., N)

as defined by equation (3-32), the discrete time function, s(i),

can be computed as

T
s = HN ~h (3-35)

Computation of the inverse Haar transform from this expression

requires N2 operations. However, grouping the columns of the

transposed Haar matrix makes it possible to reduce the number of

operations by

log 2N
N

The following program is the Fortran IV program for the

inverse Haar transformation. X and Y are the transform and in-

verse transform arrays, respectively.

SURROUTTINF RHAAR(X.?YVLFGN!
I1 FNSION X(II,Y(1I
N= 2**I.OGN
I= !
n1 5 I=I,N

5 Y(T)= XIl)
9 n 10 I=1tLC.;N
NJ= 2**( 1-t)
Al= SQRT(FLCOAT(NJ))
NI= ?**(LOGN-I + )
NHI= NI/2
On 10 J=l,NJ
Jl= J-1
L= L+1
K'!= Jl*NI
S= AI*X(L)
Dn in K=1,NI
KL= K+KD
SS= S.
IF(K.GT.NHI) SS= -S

10 Y(KL)= Y(KL)+SS
PETIJRN

, 5N .rET
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3.5 THE DISCRETE KARHUNEN-LOEVE TRANSFORMATION--THE OPTIMUM
ORTHOGONAL TRANSFORMATION

3.5.1 General

The Karhunen-Lobve transformation has long been used as
a theoretical tool in the study of random processes. 14,22-24
More recently, a discrete version of the Karhunen-Lobve expansion
has proved to be a practical tool. 2 5 This finite expansion

has found application in pattern recognition and communication

theory.1 2, 2 6'
-

3 By taking only a finite number of terms of an
infinite series expansion when a random process is expanded in
terms of a complete set of orthogonal functions, it minimizes the
average error committed.

3.5.2 Karhunen-Loeve Transform Development

Assume that a source output waveform x(t) is sampled at
regular time intervals. The samples of x(t), designated as {xi},

are processed in blocks of N samples. Let X denote a vector of
N samples which is transformed to another vector Y by the linear
transformation

Y = KX (3-36)

The components of the vector Y are quantized and trans-
mitted over a noise-free digital channel. At the receiving side

the operation is reversed; the signal vector is obtained by the
inverse transformation

AX = K
X = K-Y (3-37)
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and then a reasonable facsimile of x(t) is reconstructed at the

receiver.

The objective of this procedure is to exploit correla-

tions between input samples {x
i

} by first generating a set of un-

correlated variables {Yi } and then quantizing them sample by

sample. The optimum orthogonal transform is the matrix which

most fully exploits the correlations between input samples and

minimizes the average mean-square error between input and output.

If the continuous process x(t) is stationary and has an

autocorrelation function Rx(T), then it is known that in order to

achieve the minimum mean integral square error the basis func-

tions should be chosen in the following manner. First, it is

necessary to find all eigenvalues and eigenfunctions of the

equation

T

X~(t) = Rx(t - T) 4(T) dT

where To is a finite time interval. The eigenvalues are listed

in decreasing order, i.e.,

Xl " X2 > A3 . .

The corresponding eigenfunctions are ordered in the

same manner, that is, 1l(t), 42 (t), .... This makes it possi-

ble to represent the Karhunen-Lobve expansion of the process x(t)

as

x(t) = E aif
i

tE[O,T
o
]

i=l
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where the coefficients are

a
i

= 

0

Then the mean-square error is

e = E[x(t) - x(t) ) = R(O) - Ail(t)
i=l

The discrete version of this procedure consists of tak-

ing N samples of the process and finding the projection of the

vector X onto the best orthonormal vectors. The finite Karhunen-

Lobve expansion for X is

N

X = E aifi

i-l

(3-38)

where fi, i = 1, 2, . . ., N, are the eigenvectors of the covari-

ance matrix* of X:

Coi = tio i (3-39)

*The covariance matrix of X is defined as

C = E{(X - X)(X - X)TJ

where X denotes the mean value of X and the superscript T denotes
transpose.
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The eigenvalues Ai, i = 1, 2, . . . , N, are roots of

IAiI - C| = 0 (3-40)

where I is an N x N unity matrix.

The covariance matrix of a real process is symmetric

and its eigenvalues are real and positive quantities. The eigen-

vectors are orthonormal; i.e.,

pp = 6. (3-41)
i j 1i

Let the fi's be ordered so that Al A2 A3 . . . AN.

The transformation matrix K is the transpose of the modal matrix

which is formed as

KT= fi] . . . [N] (3-42)

The KT matrix is the matrix that diagonalizes the covariance ma-

trix C;4 i.e.,

KTCK = A (3-43)

where A is an N x N diagonal matrix. The eigenvalues (in de-

creasing order) appear on the diagonal of A. Since C is symmet-

ric and A diagonal, equation (3-42) implies that

K-' = K (3-44)

3-31



COMSAT LabsTechnical Report
CL-TR-5-71

Thus, if all eigenvalues of the expansion are used, equa-

tion (3-37) yields

X = K-l Y = K- 1 KX = X (3-45)

If the expansion of equation (3-38) is truncated to

M (< N) terms,

M

=
X = ai=l i

i=l

(3-46)

Then the mean-square truncation error is

ey = E{(X - R)T (X - X))

Using equations (3-38), (3-41), and (3-46) results in

N

e2 = E

i=M+l

E[a.}1

From the definition of C and from equation (3-39),

E a?) = Xi1)

Thus, the result is

N

= E M+i
i=M+1

(3-47)

(3-48)

(3-49)
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Equation (3-50) gives the minimum error committed when M terms

are used in the expansion. Since the Xi are arranged in decreas-

ing order, the truncation error decreases as more and more terms

are added to the expansion.

Implementation of this transformation follows the

method outlined previously. The eigenvalues and eigenvectors of

the covariance matrix are computed according to well-known numer-

ical techniques. 31,32
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4. ORTHOGONAL TRANSFORM PROCESSING OF SPEECH

4.1 GENERAL

The ability of discrete forms of the Fourier, Hadamard,

Haar, and Karhunen-Loeve transforms to reduce the bit rate neces-

sary to transmit speech signals is examined in this section. To

rate the effectiveness of each transformation method in accom-

plishing this goal, the resulting quantizing error (or noise) in

each method is determined at various bit rates and compared with

that of conventional companded PCM processing. Computed and ex-

perimentally measured results, as well as results obtained from

PB word list testing, are presented and compared. This compari-

son shows that the bit rate required for companded PCM is reduced

by 13.5 kbps by using the Karhunen-Loeve transform, 10 kbps by

using the Fourier transform, 7.5 kbps by using the Hadamard

transform, and 7.0 kbps by using the Haar transform. These bit

rate reductions are found to be somewhat independent of the

transmission bit rate.

4.2 INFORMATION RATE REDUCTION USING ORTHOGONAL TRANSFORMS

A general expression for a discrete time series, x(nT),

possessing a total signal power a 2 in terms of a set of orthogo-

nal coefficients {C
i
} and orthogonal functions {0i(nT)}, is given

by the transformation

N-1

X(nT) = Cioi(nT) (4-1)

i=O
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In this expression, T is the time between samples, n is the sam-

ple index and N is the number of samples per processing window.

The window size, NT, is not related to any specific feature of

the signal, such as the pitch period of the formant structure of

speech. Instead, it is based on the effective spectral resolu-

tion needed to represent the characteristics of the speech spec-

trum for an ensemble of talkers and words. (The choice of window

size is discussed in greater detail at the end of Section 4.3.)

The set of orthogonal functions may be any one of many differ-

ent types. The types of transforms used are the discrete forms

of the Fourier, Hadamard (Walsh), Haar, and Karhunen-Lobve

transforms.

The present objective is to determine a general expres-

sion for the information rate needed to transmit the coefficients

so that the time series may be reconstructed with the same

signal-to-quantizing noise ratio achieved through conventional

PCM transmission. This can be done in terms of the set of vari-

ances {a?} which are in one-to-one correspondence with the set of

coefficients {Ci}. Assume that coefficient C
i
with variance av

is quantized by using n
i
binary digits. Then the quantizing

error or noise associated with coded transmission of this coeffi-

cient is

K i o?
2E - 2n(4-2)
. N2

2 2ni

where Ki is a constant that expresses the consequence of the

scaling and companding associated with quantization and N2 is a

normalizing factor. N is the number of samples in the time

series set involved in determining the coefficients, as well as

the number of orthogonal coefficients required to represent a set
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of time series samples of size N. The total quantizing noise

contributed by quantized transmission of orthogonal coefficients

is then

N-1

1 N Ki 22ni

i=O

If the same information were transmitted by using PCM,

the quantizing error or noise would be

2

6PCM = KPCM 22 M (4-4)

where M is the total number of bits used to quantize each sample,

0 2 is the signal power (which is also the signal variance, since

it is assumed that bias is removed), and KpCM is a constant that

expresses the consequence of scaling and companding.

The quantizing noise expressed by equation (4-3) is

minimized when the contributions are all equal. This can be

shown by equating all partial derivatives with respect to the

variables {n
i
l to zero in equation (4-3), and observing the con-

straint that iN-1 ni = NM, where NM is the total number of bits

assigned to each window. Thus, if the sum of N contributions is

to equal the PCM quantizing noise, each contribution must equal

EsCM/N and the following equality must be satisfied for each

coefficient:

-2 PCM
N- (4-5)
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Using equations (4-3) and (4-4) in the preceding equa-

tion results in the following expression for the number of bits

required for each coefficient to fulfill the condition of quanti-

zation noise equality:

1 K i a i

n i = M + j log2 N + log2 (4-6)
KpCM

The total bit rate for the transmission of the quantized and

coded coefficients is thus

N-1

Ro= N ni, bps (4-7)

i=O

where T is the time between speech samples. The bit rate for

transmitting the same signal with the same quantizing noise by

conventional PCM is

RpCM = , bps (4-8)

If the orthogonal representation is to reduce the bit rate, the

average bit assignment must be less than M. Thus,

N-1

N E n
i

< M (4-9)

i=O

The results given in equations (4-3) and (4-4) can also

be used to derive an expression for the improvement in the

signal-to-quantizing noise ratio over that achieved with PCM
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processing. This improvement will be designated as AQ. Since

the signal power will be the same for the orthogonal transform

processed signal and the PCM processed signal, the improvement is

simply expressed as the logarithm of the ratio of the quantizing

noises given by equations (4-3) and (4-4), respectively. That

is,

AQ = 10 log -

N2
= 10 logl0 2 1N- n (4-10)

-2-
2 2M i 2-2ni

i=0 KpCM 

The values of n
i

are, of course, chosen to minimize the quantiz-

ing noise resulting from the transform processing. To calculate

the values of AQ given in the following sections, it is assumed

that Ki = KpCM, since the companding law used for all of the

orthogonal coefficients is the same as that used for the PCM

processing.

To estimate the value of AQ for the speech which was

remade after being processed by the various transformations and

bit rates, the signal-to-quantizing noise ratios for PCM were

computed at the 8000-Hz sampling rate with two, four, and seven

bits per sample. The resulting data rates were 16, 32, and

56 kbps using V = 100 companding and a peak-to-peak quantizing

range of 10 a. The computed values of S/NQ were 2.98, 15.1, and

33.3 dB, respectively. However, in the transformation analysis

performed during this study, the transmission rates were 14, 28,

and 56 kbps. Therefore, to compare PCM processing at these

rates, it was necessary to interpolate the S/NQ values. This re-

sulted in S/NQ values of 2.9, 12.1, and 33.3 dB for PCM data
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rates of 14, 28, and 56 kbps, respectively. Estimated values of
A

AQ, designated as AQ, were derived by taking the difference be-

tween the preceding S/NQ values for PCM and the S/NQ values ob-

tained by using particular combinations of transform technique

and bit rate.

The spectral distribution of the quantizing noise gen-

erated when coefficients are quantized by using the bit assign-

ments given by equation (4-6) is very nearly white. This follows

from the spectral distributions of the orthogonal functions and

the adjustment of the number of quantizing levels to produce an

equal value of quantizing error for all of the orthogonal

functions.

4.3 SPEECH SAMPLING AND ANALYSIS OF WINDOW SIZE

To arrange for processing, the speech is sampled at a

rate of 8000 samples per second and linearly quantized using

14 bits per sample, i.e., one bit for sign and 13 bits for magni-

tude. Sampling at a rate of 8000 samples per second preserves

the spectral components of the speech signal up to frequencies of

3600 Hz without excessive interference due to aliasing. This is

the reason for transmitting all telephone system PCM speech at

8000 samples per second. The use of 14 bits per sample provides

an excellent signal-to-quantizing noise ratio (74 dB for speech

having a peak-to-rms ratio of 15 dB) and ensures that the quan-

tizing noise contribution caused by the initial data preparation

is rather inconsequential as compared to that introduced by the

processing methods under investigation.

All processing was performed on an IBM 360/65 computer.

The speech data was converted from analog to digital form and

vice-versa by using an IBM 1827 data link to the IBM 360/65.
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The size of the analysis window is determined by the

number of signal samples, N, entering into the computation of the

orthogonal coefficients. If these samples are taken at intervals

of T seconds, then the analysis window has a time duration of NT.

For Fourier analysis, it is well known that the frequency resolu-

tion of this window is given by (NT)- 1 . If the spectral dis-

tribution property of the signal is to be responsible for the

differences in the coefficient variances that result in the in-

formation rate reduction, then the resolution provided by the

window must be sufficient to resolve these differences.

In the analyses performed during this program, N has

been assigned a value of 16. One reason for selecting this value

was that it is an integral power of 2; this permits the use of

the fast processing form of the orthogonal transformations.

Also, this value provides a frequency resolution of 500 Hz for

T = 125 microseconds, which is sufficient to resolve the long-

term spectral distribution of speech in terms of the variances

of the Fourier coefficients.

The value of N = 64, which provides a frequency resolu-

tion of 125 Hz, has also been examined and has been found to im-

prove the efficiency of the representation slightly. Higher

values of N will provide greater resolution capacity, easily

capable of resolving the short-term formant spectrum structure

of speech; however, use of this short-term spectrum structure to

reduce information rate requires frequent recomputation of coef-

ficient variance and reassignment of quantizing levels. This

latter form of orthogonal signal processing, referred to as adap-

tive signal processing, was not investigated in great detail.

The rationale used in the previous paragraphs to de-

termine the sample window size for the Fourier transformation

also applies approximately to the Hadamard and Karhunen-Lobve
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transformations, since the spectral distributions of the orthgo-

nal functions of these latter transforms are very similar to

those of the Fourier set.

4.4 FOURIER TRANSFORM PROCESSING OF SPEECH

To perform an experimental analysis of the Fourier

processing method, a speech sample of 65-second duration was

subjected to processing. This same sample was also used as the

source data for the other orthogonal signal processing methods

tested and discussed in the following paragraphs, and for the PCM

processing, which was used as a basis for comparing the effec-

tiveness of each method. The 65-second speech sample comprised

the speech of four talkers, two male and two female, each speak-
ing the same five sentences. The sentences used are listed in

Table 4-1.

Table 4-1. Test Sentences Used
for Experimental Evaluations

1. Alibaba knew how men buy lime.

2. She caught Sue's fuscia scarf.

3. Father let Vee shout four.

4. High altitude jets fly by screaming.

5. See the old pig's azure foot.

For this processing, a window size of N = 16 was em-
ployed. Since the speech signal was sampled at 125-microsecond

time intervals, the window width was two milliseconds. This re-

sulted in an x- 1 sin x spectrum window, shown in Figure 4-1, for

each Fourier coefficient. The time wave shapes of each of the

16 eigenfunctions are shown in column 1 of Figure 4-2. It should

be noted that the eigenfunctions are, of course, discrete.
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Quantization of the orthogonal coefficients in the

transform domain was performed in a nonlinear fashion. The form

of the nonlinearity was chosen to be logarithmic and specifically

the same as the PCM companding law generally used for speech.

The rationale behind this choice was the same as that for speech.

It was an attempt to sacrifice performance at high signal levels

to achieve improved performance at low signal levels. The net

result is to extend the dynamic range of the system so that a

wide range of talker levels can be accommodated equally well.

The companding law employed was

e(l Xmax

y(x) = Xmax log( + ) if 0 < x < Xmax

and

ge (1- Xmax

y(x) = -Xmax loge( + ) if -Xmax _ _

where x and y are the input and output of the compressor, respec-

tively, and xmax is the peak value of the input which was chosen

to be equal to 10 a, where a2 is the measured coefficient vari-

ance. The value of p was chosen to be 100. These values were

also used for PCM processing of the speech.

Equation (3-14) for the Fourier coefficients was evalu-

ated for the 65-second speech sample by using the FFT method and

N equal to 16. The standard deviations of the 16 resulting coef-

ficients were computed next; these are listed in column 1 of

Table 4-2. They are designated as ai, where i is the coefficient

index, and they are, of course, given by the square root of the

variance a0.
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Table 4-2. Fourier Transform (N = 16)--The Standard Deviations
and the Optimum Bit Assignment for Fourier Coefficients

(improvement AQ = 5.0 dB, computed from formula)

a: R = 56 kbps, S/NQ = 37.9 dB, AQ = 4.6 dB
b: R = 28 kbps, S/NQ = 17.6 dB, AQ = 5.5 dB
c: R = 14 kbps, S/NQ = 8.9 dB, AQ = 6.0 dB
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Bit assignments were next made in accordance with the

requirement that the rms error, given by equation (4-3), should

be minimized. This was accomplished by making ni, the number of

bits assigned to quantizing the ith coefficient, proportional to

log2 ai/a, where a (given by the square root of the sum of a?) is

the variance of the total signal. The resulting bit assignments

for bit rates of 56, 28, and 14 kbps are shown in Table 4-2.

Based on these bit assignments and the quantizing rule

discussed earlier, the 65-second speech sample was processed.

The resulting rms error, designated as NQ, in the processed

speech was computed by taking differences, in one-to-one corre-

spondence, between the input and output speech samples. The re-

sulting speech signal-to-quantizing noise ratios, designated as

S/NQ for each of the bit rates, are given in Table 4-2.

Next, the S/NQ was determined for the same speech sam-

ple processed by using conventional PCM techniques and the same

companding law. When compared with the S/NQ values given in the

previous paragraphs, the S/NQ for this speech sample showed an

average improvement of 5 dB that was relatively independent of

bit rate.

4.5 HADAMARD TRANSFOIRM PROCESSING OF SPEECH

Hadamard processing was performed by using the same 65-

second speech sample which was used for Fourier processing and a

window size of N = 16. The computation procedure was based on

the algorithm given in Section 3.3. The set of orthogonal func-

tions used to represent the speech signal is shown in column 3 of

Figure 4-2. Expansion of typical speech wave shapes in terms of

the Hadamard set of orthogonal functions exhibited a strong odd

harmonic structure that does not occur for the discrete Fourier
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set. For this reason, the Hadamard set of orthogonal functions

is a less efficient representation of speech than the discrete

Fourier set.

The coefficient standard deviations for the 65-second

speech sample are given in column 1 of Table 4-2. It can be seen

that the nonoptimum representation offered by the Hadamard func-

tion set results in values of standard deviation for the higher

order coefficients which are higher than those which occur for

Fourier processing.

The number of bits per coefficient was adjusted to min-

imize the mean-squared error for 56-, 28-, and 14-kbps rates by

using the same rationale which was used for Fourier processing.

The resulting coefficient bit assignments are given in Table 4-3.

Also given in this table are the signal-to-quantizing noise ra-

tios calculated by squaring the difference between the processed

and unprocessed speech samples. When compared to PCM at 56 kbps,

Hadamard processing showed an improvement in signal-to-quantizing

noise ratio, AQ, of 3 dB. Hadamard processing shows the same

level of improvement at 28 and 14 kbps.

4.6 HAAR TRANSFORM PROCESSING OF SPEECH

Haar processing employs a set of rectangular functions

illustrated in column 4 of Figure 4-2 and discussed in Sec-

tion 3.4. These functions weight the speech samples with de-

creasing periodicity as illustrated in equation (4-3) for N = 16.

The Haar coefficients were compared for the 65-second speech sam-

ple by using the algorithm given in Section 3.4.2. The resulting

standard deviations, which are shown in Table 4-4, are similar to

those which result from Hadamard processing in that the values at

the higher coefficient indices do not decrease as rapidly as they

did in the case of Fourier processing.
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Table 4-3. Hadamard Transform (N = 16)--The Standard
Deviations and the Optimum Bit Assignment for

Hadamard Coefficients

(improvement AQ = 3.02 dB, computed from formula)

a: R = 56 kbps, S/NQ = 36.1 dB, AQ = 2.8 dB

b: R = 28 kbps, S/NQ = 15.6 dB, AQ = 3.5 dB

c: R = 14 kbps, S/NQ = 5.4 dB, AQ = 2.5 dB
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Table 4-4. Haar Transform (N = 16)--The Standard Deviations
and the Optimum Bit Assignment for Haar Coefficients

(improvement AQ = 2.98 dB, computed from formula)

n
i

(bits)

i oi

Case la Case 2 b Case 3c

0 526 8 4 3

1 779 9 5 3

2 656 8 5 3

3 653 8 5 3

4 339 8 4 2

5 338 7 4 2

6 343 8 4 2

7 340 8 4 2

8 145 6 3 1

9 145 6 3 1

10 144 6 3 1

11 144 6 3 1

12 144 6 2 1

13 143 6 2 1

14 146 6 3 1

15 143 6 2 1

a: R = 56

b: R= 28

c: R= 14

kbps,

kbps,

kbps,

S/NQ =

S/NQ =

S/NQ =

35.9 dB, AQ =

14.8 dB, AQ =
5.24 dB, AQ =

2.6 dB

2.7 dB

2.34 dB
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Coefficient bit assignments were made to minimize the

rms error at 56, 28, and 14 kbps. The resulting bit assignments

are shown in Table 4-4. Comparison with bit assignments for

Hadamard processing shown in Table 4-3 reveals that the Haar co-

efficient have a slightly more uniform distribution. This indi-

cates that the Haar function set is a slightly less effective

representation of the speech process than the Hadamard set.

The resulting calculated signal-to-quantizing noise ra-

tios for each of the bit rates are shown in Table 4-4. These are

slightly less than the values achieved for Hadamard and Fourier

processing. The improvement in AQ over PCM at 56 kbps was found

to be 2.98 dB. These considerations indicate that the processing

advantage provided by the Haar transform is approximately the

same as that provided by the Hadamard transform.

4.7 KARHUNEN-LOEVE TRANSFORM PROCESSING OF SPEECH

4.7.1 Introduction

The Karhunen-Loeve transform (KLT) was used to process

speech at bit rates of 56, 28, and 14 kbps. Results demonstrated

better quality at all bit rates than was achieved by using any

of the other transform techniques. In terms of signal-to-

quantization noise ratio, speech processed by the KLT outper-

formed all of the other techniques.

The theoretical development of the KLT method was pre-

sented in Section 3.5.
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4.7.2 Determination of the KLT Matrix

To determine the KLT matrix, it is necessary to obtain
the autocorrelation function of the time series that is to be
processed. This autocorrelation function makes it possible to
form the normalized covariance matrix which is represented by

1 p(l) p(2) p(3) . . p(15)

p(1) 1 p(l) p(2) p(14 )

p(2) p(l) 1 p(l) p(13)

p(3) p(2) p(l) 1 p(12)
C =

. 1 p(l)

p(15) p(14) p(13) p(12) . . p(l) 1

where p(k) is the autocorrelation coefficient at delay time kT,
and T is the time between samples. For the processing conducted
here, T = 125 microseconds.

Figure 4-3 gives the autocorrelation functions for the
speech samples of the male and female talkers used to demonstrate
the method. In each case, the autocorrelation function was ob-
tained by averaging over the entire speech sample for each
talker. These speech samples were approximately 15 seconds in
duration. It should be noted that 16 autocorrelation values ap-
pear in the covariance matrix; this is the number of samples per
window to be used in KLT processing. The values to be installed
in the covariance matrix are, of course, obtained from the auto-
correlation function shown in Figure 4-3.
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P(k) = R(k)/PR(0)

4

1.0
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.4

0
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k

male Talker 0

Female Talker _e&

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4-3. Normalized Autocorrelation Functions
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The KLT needed to process the speech is the transpose

of the matrix that diagonalizes the covariance matrix. The

values on the diagonal are the eigenvalues, which are measures

of the variances of each of the KLT coefficients. The eigen-

values designated by Xi are given in Table 4-5. This table also

shows the actual values of the variances, designated as af, for

each KLT coefficient, These values, which are determined by ap-

plying the KLT to the male speech sample, are averaged over the

entire 15-second sample using a window size of 16 samples; it is

assumed that the same KLT functions apply to each window.

For optimum processing, the ratios of the computed

variances to the eigenvalues should be almost a constant.

Nevertheless, the ratios which are given in the last column of

Table 4-5 vary widely from a constant value. This is because

the KLT functions used for computing the coefficients were de-

termined for the entire 15-second speech passage and are not

truly optimum for each window. It should be pointed out that,

for the speech processing conducted here, even though the same

KLT functions were used for all sample windows, extremely good

results were obtained. The fact that the variances were not in

a constant ratio with the eigenvalues indicates that even further

improvement in performance could be obtained by recomputing the

KLT functions more frequently during the processing of the

speech. However, this is a burdensome process and is considered

to be impractical.
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Table 4-5. Karhunen-Loeve Transform (N = 16)--
Eigenvalues and Computed Variances

1 XI ai (a/X1i) X 106i Xi Cr i 1i

5.402

5.149

2.172

1.627

0.750

0.356

0.156

0.104

0.098

0.092

0.051

0.022

0.012

0.007

0.001

0.0005

4270

4219

2769

2324

1594

1067

701

578

550

576

416

237

147

114

87

38

3.37

3.45

3.52

3.31

3.38

3.19

3.15

3.21

3.08

3.60

3.39

2.55

1.80

1.85

7.56

2.88

The values of the KLT matrix used for computing the co-

efficients can be arrayed as orthonormal functions; this is done

in column 1 of Figure 4-2 for values of the coefficient index, i,

ranging from 0 through 15. It can be noted that these functions

have many interesting properties. Half of them are even func-

tions and half of them are odd functions. They are orthonormal
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in all possible combinations. The DC term is picked up princi-

pally in the fourth and fifth coefficients. The functions appear

to be sinusoidal or cosinusoidal and are similar to Fourier func-

tions, but they exhibit varying amounts of phase shift and

distortion.

4.7.3 Results of Speech Processing Using the KLT

Experiments performed on speech processing using the

KLT show that its orthogonal function set represents speech more

efficiently than any of the other orthogonal function sets.

Achievement of this level of performance enhancement required

that a unique set of orthogonal functions be determined for each

talker. Thus, one might say that the KLT processing was made

talker adaptive (or talker dependent) by virture of different or-

thogonal function sets. Such adaptivity is, of course, impossi-

ble for any of the other orthogonal function sets since they are

specifically determined beforehand.

Based on the criterion of minimum rms quantizing error,

the bit assignments used for one talker are given in Table 4-6.

For different talkers, the orthogonal function sets and the bit

assignments differed slightly. In the 14-kbps case, two bit

assignments were explored as shown. The resulting signal-to-

quantizing noise ratios are also given in Table 4-6.

The KLT performance at 56 kbps in terms of signal-to-

quantization noise ratio exceeds that of conventional PCM by

7.7 dB. This margin increases to 9.8 dB at 28 kbps and to 9.7 dB

at 14 kbps. It should also be noted that the performance of the

KLT at 14 kbps was equivalent to that achieved by conventional

PCM at 28 kbps.
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Table 4-6. Karhunen-Lobve Transform (N = 16)--Optimum
Bit Assignments for KLT Coefficients

(improvement AQ = 9.5 dB, computed from formula)

n i (bits)
i

Case la Case 2b Case 3c Case 4 d

0 10 6 4 4

1 10 6 4 4

2 9 6 3 4

3 9 6 3 4

4 8 5 3 3

5 8 4 3 3

6 7 4 2 3

7 7 4 2 3

8 7 3 2 0

9 7 3 2 0

10 7 3 0 0

11 6 2 0 0

12 5 2 0 0

13 5 1 0 0

14 4 1 0 0

15 3 0 0 0

a: R=

b: R =

c: R=

d: R=

56

28

14

14

kbps,

kbps,

kbps,

kbps,

S/NQ

S/NQ

S/NQ

S/NQ

= 41.0

= 21.9

= 12.6

= 12.3

dB, AQ = 7.7 dB

dB, AQ = 9.8 dB

dB, AQ = 9.7 dB

dB, AQ = 9.4 dB
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The spectrum distribution function of the speech and

the quantization noise produced for the 14-kbps operation are

shown in Figure 4-4. It is seen that, at the low-frequency por-

tion of the spectrum, the spectral density of the speech exceeds

that of the quantization noise by as much as 16 dB, whereas in

the high-frequency portion of the spectrum, the spectral density

of speech and noise are nearly equal. This distribution function

represents the performance of a male talker averaged over a 15-

second speech sample.

4.8 PB WORD LIST PROCESSING AND TESTING

The effectiveness of speech communication depends upon

the nature of the speech material, the talker and listener, and

the conditions under which the transmission and reception occur.

A relative measure of the effectiveness of various communication

systems can be obtained by standardizing the speech material and

by using an intelligibility test procedure. Thus far, the evalu-

ation of various orthogonal transform processing methods has been

based on computation of signal-to-quantizing noise ratios. Qual-

ity has also been assessed by expert listeners, but this evalua-

tion cannot be expressed in a quantitative form.

To subjectively assess the relative performance of the

various processing techniques, PB (phonetically balanced) word

list testing has been used. Three word lists (lists 1, 3, and 4

in Table 4-7) have been selected from the 20 different lists

(consisting of 50 words each) of the American Standard Method for

measurement of monosyllabic word intelligibility. Lists 1 and 3

were recorded by a first talker (SJC), and lists 3 and 4 by a

second talker (JAS). The source tape thus contained 200 spoken

monosyllabic words. List 3 was read by both talkers to permit

assessment of speaker dependency.
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Table 4-7. PB Word Lists

COMSAT Labs

4-26

PB Word List No. 1 PB Word List No. 2

1. cane 26. pest 1. tang 26. blush

2. there 27. slip 2. fate 27. nab

3. dish 28. rub 3. suck 28. bait

4. hid 29. feast 4. else 29. bud

5. heap 30. deed 5. pit 30. rap

6. pants 31. cleanse 6. gill 31. moose

7. hunt 32. folk 7. charge 32. trash

8. no 33. nook 8. bought 33. gloss

9. bar 34. mange 9. cloud 34. perk

10. pan 35. such 10. mute 35. vamp

11. fuss 36. use (yews) 11. bean 36. start

12. creed 37. crash 12. scythe 37. earl

13. box 38. ride 13. vest 38. corpse

14. strife 39. pile 14. rib 39. sludge

15. dike 40. rat 15. pick 40. tan

16. not 41. rag 16. hock 41. ways

17. ford 42. is 17. our 42. bounce

18. end 43. wheat 18. hit 43. niece

19. then 44. rise 19. job 44. awe

20. bask 45. hive 20. wish 45. them

21. fraud 46. grove 21. nut 46. need

22. smile 47. toe 22. dab 47. quart

23. death 48. plush 23. frog 48. five

24. are 49. clove 24. log 49. hire

25. bad 50. fern 25. snuff 50. shoe
1

---I
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Table 4-7. PB Word Lists (Continued)

PB Word List No. 3

1. why

2. turf

3. gnaw

4. drop

5. jam

6. flush

7. rouse

8. neck

9. sob

10. trip

11. dill

12. thrash

13. dig

14. rate

15. far

16. check

17. air

18. bead

19. sped

20. cast

21. class

22. lush

23. shout

24. bald

25. cape

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

size

wedge

deck

hurl

wharf

leave

crave

vow

law

stag

oak

nest

sit

crime

muck

tame

take

who

toil

path

pulse

fig

barb

please

50. ache

PB Word List No. 4

1. float

2. sage

3. cloak

4. race

5. tick

6. touch

7. hot

8. pod

9. frown

10. rack

11. bus

12. blonde

13. pert

14. shed

15. kite

16. raw

17. hiss

18. fin

19. scab

20. how

21. strap

22. slap

23. pinch

24. or

25. starve

26. new

27. rut

28. neat

29. dodge

30. sketch

31. merge

32. bath

33. court

34. oils

35. shin

36. peck

37. beast

38. heed

39. eel

40. move

41. earn

42. budge

43. sour

44. rave

45. bee

46. bush

47. test

48. hatch

49. course

50. dupe
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The source tape was digitized at the sampling rate of

fs = 8000 Hz. An interval of three to four seconds between words

was used to permit a listener to write down his response. In

order to reduce the computer processing time, this tape was pro-

cessed by using a voice switch to eliminate processing during the

silence periods. Figure 4-5 shows the computed autocorrelation

functions of the two talkers.

Fourier, Hadamard, and Karhunen-Lobve transformations

and companded PCM were used to process the PB word lists. For

each transformation type and talker, a set of coefficient vari-

ances was computed. These were then used to assign the number of

quantizing bits so that the quantizing error power was uniform as

discussed in the previous section. For bit values of 56, 28, and

14 kbps, the bit assignments for each of the coefficient sets are

given in Table 4-8. Note that, for the Karhunen-Lobve transfor-

mation, the bit assignments differ for each talker. It should be

recalled that, for this transformation, the orthogonal functions

are also different for each talker. Attempts to process the

speech of two talkers by using a compromise set of orthogonal

functions (determined from the autocorrelation function of a com-

posite of the speech of both talkers) have led to results which

are inferior to those achieved when the orthogonal functions spe-

cifically determined for each talker are used.

Table 4-9 lists the speech signal-to-quantizing noise

ratios for each of the orthogonal processing techniques for each

talker. As was the case for the spoken sentences used for the

analysis given in the preceding section, the methods in order of

decreasing signal-to-quantizing noise ratio are: Karhunen-Loeve,

Fourier, and Hadamard. In addition, it should be noted that the

values of signal-to-noise ratio achieved are less than those ob-

tained for the sentences. This is probably attributable to the
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Figure 4-5. Autocorrelation Functions, Based on 100 PB Words,
for Two Talkers

4-29

1. 
.



T
e
c
h
n
i
c
a
l
 
R
e
p
o
r
t
 

C
O

M
SA

T 
L

a
h
s

C
L
-
T
R
-
5
-
7
1

c a)

IVcF:

'a0a)4(O

X
~ InU

)#
1-4

a~a
w

e -14
O

 

U
4

1 -W .,4
m

U
a

_

W
a)
4,c

W
 

0,

0
4
 

4

U
) 

41,1

m

Nr(C
o

C
q H
D

0,.0Ln

R
4

 
H

'd
 

X
_(4 

N
4 4

tt o
(da 

Pd

4J 
w

.
*dq 

LA
Pq

III~

1-4a,
-qo40

U
)

a4--4

004N

U
w

uL

I IV
 

' 
m

 
( N

 
'N 

N

-4U
)

.rl

u
4co

4-r.euOC

N
 

N
4 

H
 

H
 

H
 

H
 

0 
0 

w
 

o 
Ln 

m
 

v 
v 

r-N
 

rn
c
4
( 

c, 
N

 
LA

4 
r-i

O
 a 

0 
O

 
a 

0
0
 

N
 

N
 

1 
04- 

.0
 

N
 

0 
PA

 
O'D 

q 
0 

t, 
C

v 
m

 
m

 
0 

m
 

N
 

c
N

 
N

 
N

 
0 

N
 

10 
'0

 
a 

'0
 

O
a

C
 

C
 

n 
C

 
n 

n 
'n 

-
-
-
 

-,
 

-
O

 
O

 
a 

C
O
0

'.0:~, 
~
 

~
 

rr) 
~
 

~
 

C~ 
LA 

LA 
LA 

LA 
,,--I 

-
-I
 

w-I 
,
 

,
 

0 
00

N
 

N
 

r
.0

 
-

w
 

wD 
wD 

'.0 
Ln

4-a)OU 
0 

4 N
 

VW
 

.
W

 
N

O
 

0 
O

 
H

 
e 

C
 

L 
n

., 
ru

 
r 

H
 

H
 

H
 

H
 

H

4
4
 H

a)

U

.,4U
)

U
)

UOP44 U
)

04o 0c

44m -4cUI
-

c,-4-

r-E
q

4
-
3
0



COMSAT Labs Technical Report
CL-TR-5-71

noncontinuous, low-duty cycle character of the PB words as op-

posed to the continuously flowing, high-duty cycle character of

the sentences.

Table 4-9. Signal-to-Quantizing Noise Ratios for PB Words

Signal-to-Quantizing Noise Ratio

Bit Rate Karhunen-Lobve Fourier Hadamard PCM*
(kbps)

SJC JAS SJC JAS SJC JAS SJC JAS

56 40.1 37.4 36.1 34.8 34.75 33.4 32.6 32.7

28 19.9 16.8 16.5 14.4 15.8 13.9 12.1 12.1

14 9.8 7.8 7.5 6.7 6.5 5.5 3.0 3.0

*28- and 14-kbps values are interpolated from the values com-
puted for 56, 32, and 16 kbps.

The PB words processed as described previously were

scored by a jury of four experienced listeners; the results are

tabulated in terms of percentage of words correctly perceived as

a function of bit rate and processing method in Table 4-9.

The tape recordings used for these tests were given to

NASA/MSC for more intensive evaluation, but the results were not

available at the time that this report was prepared.

4.9 ADDITIONAL ATTEMPTS TO REDUCE BIT RATE

In this section, two methods to further reduce the bit

rate needed to transmit the orthogonal transform coefficients are

discussed. The first of these, in which the quantizing noise

spectrum was adjusted to more nearly follow the shape expected
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for typical speech, appears to have some merit. The second, in

which the orthogonal coefficients of the Fourier transform were

coded in a polar form rather than in a Cartesian coordinate form,

has not produced significant data rate reduction.

4.9.1 Variation of Coefficient Bit Assignments

Judicious assignment of the number of quantizing levels

allowed for each orthogonal coefficient may make it possible to

further reduce the bit rate for intelligible speech. The cause

of this reduction is the average spectrum distribution function

of speech and particularly the manner with which the speech spec-

trum rolls off at high frequencies. Data rate reduction may be

achieved by assuming an average speech spectrum distribution, de-

termining the relationship for the noise spectrum as a function

of various contiguous bands in the spectrum for both PCM and

coded Fourier cases, and assigning quantization levels in the

coded Fourier case so that the quantization noise in each recon-

structed band is proportional to the speech spectrum density.

When this is done, the speech spectrum is uniformly masked by

the quantizing noise and some further data rate reduction is

possible.

Several bit assignment arrangements stemming from the

preceding approach were tested for the fast Fourier and fast

Hadamard transforms using a 16-sample window size. The arrange-

ments were evaluated by listener assessment. The bit assignments

used are listed in Table 4-10. Each arrangement tested is iden-

tified by a letter of the alphabet, and i indicates the order of

the coefficient.
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Table 4-10. Assignments of the Number of Bits per Orthogonal
Coefficient for Various Speech Processing Schemes

Bit Rate i (Order of the Coefficient) Total
(kbps) Bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits per Coefficient

A 49.5 8 8 8 7 7 7 7 6 6 5 5 5 5 5 5 5 99

B 38.0 0 8 8 7 7 7 7 6 6 5 5 5 5 0 0 0 76

C 36.0 0 6 6 6 6 6 6 6 6 6 6 6 6 0 0 0 72

D 42.0 8 8 8 7 7 7 7 6 6 5 5 5 5 0 0 0 84

E 32. 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 65

These bit assignment arrangements produced higher val-

ues of computed rms error, but, because the error distribution as

a function of frequency either falls in an unused part of the

spectrum (such as above 3200 Hz or below 300 Hz) or is distrib-

uted so that it is less disturbing to the human hearing mechanism

(i.e., shaped in a manner that uniformly distributes articulation

index loss across the speech spectrum), the loss in intelligibil-

ity at a given value of rms error is reduced.

Arrangements B, C, D, and E in Table 4-10 are attempts

to obtain acceptable quality and intelligibility at low data

rates. The rationale behind arrangements B and C is that the

speech signal might be effectively bandpassed from 250 Hz to

3.25 kHz by not transmitting the i = 0, 13, 14, 15 coefficients.

The remaining coefficients are either assigned the same bit val-

ues as the coefficients of arrangement A or are all given a value

of six bits. Consequently, it should be expected that energy in

the ranges from 0 to 250 Hz and from 3250 to 4000 Hz is removed

from the final signal. Of course, the spectrum of the removed

coefficients extends into the range above 250 Hz and below
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3250 Hz, and the spectrum of the remaining coefficients spreads

into the range below 250 Hz and above 3250 Hz, since the spec-

trum shape of the coefficients is of the form:

2 2 s i n (w- wi ) (T/2)2S(Wi) = °iT 2 (( - Wi)(T/2)]

where wi is the frequency of the ith Fourier coefficient and oa

is its variance. This spectrum shape was plotted in Figure 4-1

for the window size T = 2ms, which is the window width for

16 samples taken at 8000 samples per second.

Figures 4-6a and 4-6b are sonagrams which clearly show

the result of dropping the i = 0 coefficient. Figure 4-6a is for

conventional 56-kbps speech, and Figure 4-6b is for speech pro-

duced by bit arrangement B. The arrows indicate areas where the

undesired effects of dropping the i = 0 coefficient are present.

Undesired effects occurring below 250 Hz are, of course, removed

when the speech is high-passed at 250 Hz, but other effects seen

above 250 Hz cannot be removed so simply. It is obvious that the

effect of dropping a coefficient does extend into the space occu-

pied by adjacent coefficients and, hence, some audible effect

should be expected.

Arrangements B and C were designed to explore the ef-

fect of dropping the lowest and highest order coefficients.

Dropping the 0-order coefficient was found to produce a raucous,

husky effect that is considered to be unacceptable. However,

dropping the three highest order terms produced a result that is

acceptable but which occasionally results in a slight "ringing"

effect for female voices.

As previously pointed out, arrangements B and C also

differed in the manner of assigning the bits; B was assigned

values that minimized the computed mean-squared error and C was
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assigned values that produced a constant signal-to-noise ratio in

each coefficient spectrum range. The latter was designed to pro-

duce a uniform loss in terms of articulation index over the

speech spectrum range. For this arrangement, the assignment was

six bits per coefficient, producing a signal-to-quantizing noise

ratio of approximately 30 dB in each coefficient spectrum range.

There was very little difference between the results of arrange-

ments B and C. Hence, it was decided that the technique of bit

assignment equalization has merit.

Arrangements D and E were designed to further explore

the merit of uniform bit assignment. Arrangement D which is also

a reference case, is the same as A except that the i = 0 coeffi-

cient is restored so that the raucous effect caused by its ab-

sence is eliminated. Arrangement E, which also restores the

i = 0 coefficient, uses a constant bit assignment of five bits

for all of the coefficients except the top three. Both of the D

and E arrangements produced good results. The latter is particu-

larly interesting, since it operates at the relatively low bit

rate of 32.5 kbps.

All arrangements listed in Table 4-10 were tested by

Fourier processing. Arrangement E was tested by both Fourier and

Hadamard processing. The result of Hadamard processing demon-

strated very good quality and intelligibility and even seemed to

sound better than the results of Fourier processing.

4.9.2 Polar Coordinate Representation

Another method of transmitting the Fourier orthogonal

coefficients is made possible by expressing the real and imagi-

nary parts of each coefficient in terms of a polar coordinate

representation, i.e., a resultant or magnitude and a phase angle.
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It was hoped that this representation would permit some reduction

in the bit rate required to transmit the magnitude information,

since the magnitudes are related to the formant structure of the

speech spectrum and should therefore change at a slow rate. The

investigation, however, showed that, because of the arbitrary

phase relationship between the periodicities contained in the

speech signal and the sampling periodicity, the change in magni-

tudes is sufficiently rapid to discount the rate reduction that

had been desired. It is likely that this difficulty could have

been avoided by significantly increasing the window size, e.g.,

to N = 256, so that averaging sufficient to remove the periodic-

ity interaction would occur; however, this would significantly

increase the implementation complexity and was considered imprac-

tical at this time.

The polar coordinate technique was first attempted for

windows of sample size 16. The magnitudes were averaged for se-

quences of eight windows and coded in companded quantized form

with five bits. The phases, of course, were not averaged; a full

set of phase values was transmitted for each window. The bit

rate that would be produced for this kind of processing is

26 kbps. However, in an initial analysis of this processing

method, it was found that the magnitudes of the Fourier coeffi-

cients computed for sets of 16 samples varied significantly from

window to window. Hence, the average value taken over a set of

eight windows would not accurately represent the values of the

resultants, since a window size of 16 samples is too short a time

interval (only 2 milliseconds) to contain a sample of the speech

that is representative of the long-term average. That is, the

phase of the window relative to the phase of the fundamental

pitch of the talker's speech will cause significant variations

in the values of the resultants. Hence, an average value taken

over a set of, for example, eight windows will not accurately

represent the correct values which occur for each window.
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One possible means of circumventing this problem is to

increase the window duration by increasing the number of samples

per window. To accomplish this, it was decided to use a window

width containing 64 speech samples and to average over eight win-

dows. This strategy would result in a bit rate of 26 kbps. This

window would contain a segment of speech that is less likely to

change significantly as the phase of the window changes relative

to the phase of the fundamental pitch of the speech. With five

bits per coefficient to represent the average resultants and six

bits per phase coefficient, this method was used to process

speech. Analysis of the values of the resultants from window to

window showed that some variations still existed even with the

longer window.

The method described in the preceding paragraph was

used to process speech by the computer. The remade speech pos-

sessed a rough quality that was judged unsatisfactory. This

quality can only be attributed to the failure of the averaging

process to accurately represent the true values of the resultants

when averaging over eight windows.

It was next decided to average over only two windows

using the 64-sample size window. This produced a speech quality

which was considerably improved over that achieved by averaging

over eight windows, but was still unsatisfactory. The two-window

averaging required a bit rate of 34 kbps. However, the reduction

in bit rate is probably not worth the quality reduction that

results.

In summary, it appears that the polar coordinate repre-

sentation in itself, when no averaging is applied, produces very

good speech quality. When averaging was applied in an attempt to

reduce bit rate, the reduced quality which was associated with

the bit-rate reduction more than offset any value of the reduc-

tion. Some consideration was also given to further increasing
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window size; however, it was felt that any further increase in

window size would not permit averaging to be performed at all,

since the speech spectrum would have changed significantly during

the time lapse from one window to the next. Therefore, it was

concluded that averaging the magnitudes of the polar coordinate

representation over a number of windows is not a good method for

further reducing the bit rate for orthogonal speech transmission.

4.10 SUMMARY OF THE ORTHOGONAL TRANSFORM TECHNIQUES FOR
SPEECH PROCESSING

Four orthogonal transformations, Fourier, Hadamard,

Haar, and Karhunen-Lobve, have been evaluated for speech process-

ing and compared in terms of signal-to-quantizing noise perfor-

mance and PB word list scores. In each case, the same 65-second

duration speech sample, containing the speech of two male and two

female talkers, was used to perform the experimental analysis.

The source speech was sampled at a rate of 8000 samples per sec-

ond, and processing was performed using window sizes of N = 16.

Speech was processed by each of the transforms at bit rates of

56, 28, and 14 kbps. In addition to orthogonal transform pro-

cessing, PCM processing, optimally adjusted to produce the best

possible performance, was employed. This procedure constituted

a basis for ranking the performance of the orthogonal processing

techniques.

The performance of each of the processing methods in

terms of signal-to-quantizing noise ratio as a function of bit

rate is shown in Table 4-11 and Figure 4-7. Also shown in

Table 4-11 are the signal-to-quantizing noise ratios for PCM

processing (interpolated in the case of 28 and 14 kbps from the

nearest values which are integral multiples of 8000 samples/

second). In addition, for each processing method and bit rate,
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the improvement in signal-to-noise ratio over that provided by

PCM is given.

Table 4-11. Signal-to-Quantizing Noise Ratios for Fourier,
Hadamard, Haar, and Karhunen-Lobve Transforms

Bit Rate Orthogonal PCTI AQ Improvement
Transform (kbps) Transform (dB)in S/N Over

S/NQ (dB) PCM (dB)

56 37.9 33.3 4.6

Fourier 28 17.6 12.1 5.5

14 8.9 2.9 6.0

56 36.1 33.3 2.8

Hadamard 28 15.6 12.1 3.5

14 5.4 2.9 2.5

56 35.9 33.3 2.6

Haar 28 14.8 12.1 2.7

14 5.24 2.9 2.34

56 41 33.3 7.7

Karhunen-Lobve 28 21.9 12.1 9.8

14 12.6 2.9 9.7

Examination of the data in Table 4-11 shows that

Karhunen-Lobve processing clearly provides the greatest enhance-

ment in performance, i.e., an average of 9.1 dB over PCM. Note

that, at 14 kbps, it provides an S/NQ equivalent to that of PCM

at 28 kbps. It should be pointed out that this method of pro-

cessing does require determination of a unique set of orthogonal

functions for each talker. If a compromise set of orthogonal

functions is used to accommodate several talkers, some degrada-

tion will be exacted; however, even with this degradation, the

Karhunen-Loeve transform may still outperform all of the others.
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The second ranking transformation is the Fourier trans-

formation, providing an average enhancement of 5.4 dB over PCM.

This transformation-may possess some processing advantage over

the Karhunen-Lobve transformation, since it is not necessary to

determine special orthogonal function sets; thus, a permanently

stored orthogonal function set is used. Also, the fast Fourier

transform (FFT) method can be applied. No comparable process ex-

ists for the Karhunen-Lobve transform; however, this should not

constitute a serious limitation for the Karhunen-Lobve method,

since the FFT advantage is not great for the small window sizes

used.

The third ranking technique is the Hadamard transforma-

tion. Its S/NQ shows an average improvement of 2.93 dB over that

of PCM. Hadamard processing is very simple, since the orthogonal

functions are only two-valued, e.g., ±1. It is probably the most

economical method for implementing an orthogonal transform

method, but of course, as is seen from the results obtained here,

it is not the most effective.

The fourth ranking technique is the Haar transforma-

tion. Actually, its.performance is not very different from that

of the Hadamard transformation, since it provides an improvement

of 2.56 dB over PCM. In terms of implementation, it is also sim-

ple and its requirements would probably be comparable to those of

the Hadamard transformation.

Another aspect of the performance of the various trans-

formations was shown by the rms error rate-distortion functions

in Figure 4-6. These curves, which were plotted by using the

data from which Table 4-12 was derived, can be used to graphi-

cally determine the bit-rate reductions achieved by each of the

processing methods. For 56, 28, and 14 kbps, the bit rate is re-

duced by an average of 13.5 kbps by Karhunen-Lobve, 7.5 kbps by
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Fourier, 5.0 kbps by Hadamard, and 4.0 kbps by Haar at a signal-

to-quantizing noise ratio of dB. The bit-rate reductions appear

to increase at lower values of signal-to-quantizing noise ratio.

Table 4-12. PB Word Scores (150 words, two talkers)

Word Score (percent)
Bit Rate (kbps)

Karhunen-Lobve Fourier Hadamard

56 98 99 99

28 98 95 96

14 95 89 85

Monosyllabic PB words were also used to evaluate the

performance of the various orthogonal processing methods. One-

hundred fifty words, spoken by two talkers and evaluated by four

listeners, were used. These tests show that, at 56 and 28 kbps,

differences among the Karhunen-Lobve, Fourier, and Hadamard pro-

cessing methods cannot be observed. However, at 14 kbps, the

Karhunen-Lobve transform produces significantly better results

that the Hadamard. The PB word test results were given in

Table 4-9.
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5. ORTHOGONAL TRANSFORMATION TECHNIQUES FOR TWO DIMENSIONS

5.1 INTRODUCTION

The use of conventional pulse-code modulation techniques

to transmit television signals requires a very wideband transmis-

sion medium. Therefore, new bandwidth compression (or, equiva-

lently, bit-rate reduction) techniques have been explored for

digital transmission of television signals.

Reduction of the bit rate required for the transmission

of a television channel is possible if the coefficients obtained

from a suitable orthogonal transform of the television signal are

properly coded. The advantage of using an orthogonal transforma-

tion depends on the suitability of the transformation for the

representation of the signal and the simplicity of the implementa-

tion. The overall performance can then be judged by using conven-

tional PCM as a reference.

With the development of high-speed digital computers,

various transformations have recently been explored by computer.

simulation for possible bit-rate reduction. The well-known

Fourier transform, which can be computed very rapidly, is typical

of the orthogonal transforms which are being studied. Although the

FFT algorithm is very efficient, its implementation is not simple.

However, the Fourier transform of an image can be practically de-

termined by using a coherent optical system.

Another transformation which can be computed very rap-

idly is the discrete Walsh or Hadamard transformation which does

not require any multiplication operations. Alternatively, the

television signal may be considered as a random process and the

eigenvectors derived from the covariance matrix of the process

may be used to represent the signal. This transform is known as

the Karhunen-Loeve transform.
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These three transformations have been studied and used

to process a moonscape slide at various bit rates. To produce an

array of samples for image processing, the moonscape slide was

scanned by a flying spot scanner. A general-purpose computer was

used to perform spatial domain and transform domain processing on

this array of data. The processed image was then reconstructed by

the flying spot scanner.

PCM processing in the spatial domain is performed on a

line-by-line basis. Orthogonal processing has been accomplished

on small N x N blocks of the image frame.

The application of linear transformation and block quan-

tization to image bandwidth reduction problems has been studied

by several researchers. An extensive bibliography is included as

Section 7.6.

There are two sources of error in the transmission of an

analog image in digital form over a physical transmission medium:

quantization error and transmission error (channel error). The

digital system must be designed for the best overall performance

according to a suitable performance criterion. However, because

of the complexity of the overall system, the usual approach to

source and channel encoding has been to consider these two errors

as separate problems. This is somewhat justified, since quanti-

zation errors can be reduced by using nonlinear quantization and,

alternatively, channel errors can be reduced by channel encoding.

Therefore, in the study of orthogonal transforms for possible

image transmission rate reduction, channel effects will be

ignored.

A good understanding of the statistical properties of

the orthogonal transform domain is required to develop efficient

quantization and coding methods.
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5.2 PCM IMAGE PROCESSING

In PCM transmission of an image, 3 3 '3 4 the continuous

image is first sampled in the spatial domain to produce an L x L

array of discrete samples which are quantized in brightness by

using Nb = 2 M levels. Then, B, the total number of bits per frame

to be transmitted, is given by

Bt = L2 M

Subjective tests are made to determine the tradeoff be-

tween L and M which will result in the "best" picture.3 5 The re-

sult necessarily depends on the type of material and the definition

of the "best" picture. For commercial applications, however, the

final decision is based on subjective tests. The values for the

U.S. commercial television systems are L = 525 and M = 8 bits per

sample.

The image degradation which results when the quantization

process uses a smaller number of bits per sample is commonly known

as the contouring effect, which is the formation of steps or level

changes instead of gradually changing brightness. This effect be-

comes perceptible when M is reduced to six or seven bits per sam-

ple. For PCM picture transmission, some of the well-known tech-

niques for removing the effect of the quantization noise are

addition of pre-emphasis and de-emphasis networks to conventional

PCM, 3 6 use of pseudo-random noise, 3 7 and nonuniform quantiza-

tion. 8'
3

9 Also, techniques have been proposed for shaping the

quantizing noise spectrum by using feedback around the quanti-

zer; 40 41 these techniques have found application in low-resolution

picture transmission systems.
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5.3 QUANTIZING IN THE TRANSFORM DOMAIN

In the transform domain, the effect of quantizing is en-

tirely different from that encountered in conventional PCM. The

intensity of any one reconstructed image element in an N x N array

of picture elements is the weighted average of the contributions

of N 2 quantized coefficients. Thus, any one picture element does

not reflect the quantization steps used to specify the coefficients.

Consequently, no contouring is observed even at rates as low as two

bits per picture element. As previously mentioned, Roberts' pseudo-

random noise technique, 3 7 which involves the addition of noise to

the signal before and after quantizing to smear out contours, has

been used to reduce the subjective perception of contours. The

averaging process provided by the transform domain processing is

considered to be a superior means of removing such contouring,

since it deliberately exploits the redundancy properties of the

picture.

Transform coding makes bit-rate reduction possible be-

cause of the greater concentration of energy in the transform do-

main. This can be seen most clearly in terms of the Fourier

transformation. When the Fourier transform of a frame of picture

samples is taken and the magnitudes of the Fourier coefficients

are displayed on a CRT tube, it is seen that the intensity is very

high near the origin and along the vertical and horizontal axes.

The value at the origin of the Fourier domain gives the average

brightness of the picture, and for most pictures, the intensity

distribution in the Fourier domain approximates the shape of a

hyperbola. A similar situation occurs in the Hadamard transform

domain.

For high-quality transformed image transmission, every

coefficient must be coded in proportion to its importance to the

reconstruction of the image. Thus, the bit distribution must be
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in proportion to the variances of the coefficients. Since obtain-

ing statistics of the transform coefficients is a monumental task,

another approach has been used. In this approach, the picture is

subdivided into smaller blocks and the variances are obtained by

ensemble averaging over all of the blocks of a single frame.

This is also reasonable in terms of implementation, since trans-

form processing a full frame in a single transformation would be

considerably more involved and would probably not yield signifi-

cantly improved results.

5.4 TWO-DIMENSIONAL DISCRETE FOURIER TRANSFORM (2D-DFT)

Let f(x,y) denote a two-dimensional square array of

values obtained by sampling the brightness of an image at N x N

points. (A practical value of N in terms of processing is 16.)

Let F(u,v) be the two-dimensional Fourier transform of f(x,y).

Mathematically, such a two-dimensional discrete Fourier transform

is defined as*

*More generally, a two-dimensional Fourier transform pair is de-
fined on a rectangular spatial lattice of N 1 samples in the x
direction and N 2 samples in the y direction:

F(u,v) = 1 - y exp 2ri x +
N , f(x,y) x =0

1 2 x=O y=0 LN

u = 0, 1, ... , N1 - 1

u=O v=O /J

x = 0, 1, . . , N 1

y = 0O 1, . .1
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N-1 N-1

F(u,v) = - f(x,y) exp[- Ni (ux + vy)
2N
x=O y=O

u,v = 0, 1, . . . , N - 1 (5-1)

N-1 N-1

f(x,y) F(uv) = F(uv)exp[+2(ux + vy)]

u=O v=O-0

x,y = 0, 1, . . . , N - 1 (5-2)

where f(x,y) is the image intensity function in the spatial do-
main, F(u,v) is the Fourier transform, and u and v are called the

spatial frequencies.

The two-dimensional Fourier transform F(u,v) of a spa-
tial signal function f(x,y) can be computed as two sequential one-
dimensional transforms, since the Fourier kernel,

exp[ ±2Ni(ux + vy

is separable and symmetric. Thus,

N-1 N-1

F(u,v) = N -_ 2i vexp(y) N f(x,y) exp (-i ux
y=O x=O

r (u,y)

For image processing applications, f(x,y) is a positive
real function representing the brightness of the spatial sample.
The horizontal transform r(u,y) is a complex function. However,
it has a conjugate symmetry property:
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I'*(u,y) = F(N-u,y) Nu u = is 2, o ., - 1

The two-dimensional Fourier transform of a real-valued function

has the following conjugate symmetry property:

F*(u,v) = F(N-u,N-v) Ng u~v =1, 2, . . , - 1

The zero spatial frequency term is a real number and represents

the two-dimensional average of the image brightness:

N-1 N-1

F(0,0) = 1 E E f(xy)

x=O y=O

(5-5)

For u = v = N/2, the two-dimensional Fourier transform

is real:

N-1 N-1

F(NN) N = x= y= E
x=0 y=0

(5-6)

This term is analogous to the folding frequency term encountered

in the one-dimensional FFT analysis of a bandlimited time func-

tion. The F(O,N/2) and F(N/2,0) components are real but unequal

for a spatial function with no particular symmetry. That is,
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N-1 N-1

F(ON) = 1 1 E2 (-1)Y f(x,y)
x=0 y0 (5-7)

N-I N-1

F(,O = ! (-1)x f(x,y)(\2 ) N2

x=O y=O

The complex conjugate symmetry properties of the two-

dimensional discrete Fourier transform for real f(x,y) are shown

in Figure 5-1, where spatial frequency components which are com-

plex conjugates are joined by straight arrows. Examination of

Figure 5-1 shows that, if the magnitudes (or logarithms of the

magnitudes) of the spectral components are displayed with varying

intensities, the two-dimensional spectral plot thus obtained will

have an odd symmetry with respect to u = N/2 and v = N/2 lines

and v = u and v = -u + N - 1 diagonals, with the exception of

points on the u and v axes. The spectral points on these axes

also have a certain conjugate symmetry property:

N-1 N-1

F(O,v) = F*(O,N-v) N=- 
2

f(x,y) expN vy]

x=0 y=0 (5-8)

N-1 N-1

F(u,O) = F*(N-u,O) 21 f(x,y) exp[-_2 ux]

x=O y=O

The u = N/2 and v = N/2 axes have the following conjugate symmetry

property:

F(Nv) = F*(N' N-v)

F(u,2) = F*(N-u,2)\ 2 2)~~~~~~~(59
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As a result of the conjugate symmetry properties, while

the transform contains 2N2 components (the real and imaginary or

magnitude and phase components of each spatial frequency), only N2

data components are required to describe the Fourier transform of

an image. Pratt and Andrews have produced CRT displays of the

Fourier transforms of some images. They have shifted the origin

to the center of the transform by multiplying the image function

by (-1)x+Y before the transmission:

N-1 N-1

G(u,v) =1 E (-1)x +
y f(x,y) exp[ 2ri(ux + vy)

N 2 EE y N
x=O y=O

Then it can easily be seen that

G(u,v) = F(u+N,v+N2) (5-10)

This shifted form is useful for display purposes only. The recon-

struction of the images is accomplished by using F(u,v).

A two-dimensional discrete Fourier transform has been

computed over N x N (N = 16) blocks of the moonscape slide. First-

and second-order statistics of the Fourier coefficients are com-

puted by ensemble averaging over the 1024 blocks. Figure 5-2 plots

the isovariance contours of the coefficient variances. The values

of the variances are in dB because of large dynamic ranges. Each

of the frequency variables u and v takes on N = 16 discrete values.

It should be noted that the value at the origin represents the

average brightness of the individual N x N block. Obviously, this

value should be quantized very accurately; otherwise, a checker-

board effect can occur over the full frame.

To minimize the mean-square error caused by quantization,

the bit distribution in the transform domain is made in accordance
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with the variances of the coefficients, with the constraint that

the total number of bits should not exceed a given maximum. This

maximum is determined by considering PCM transmission of the same

image.

The total quantizing noise caused by the quantized trans-

mission of the N x N block of image is

N 2 -1

£2 N2 E Ki 22i (5-11)

N i=0 2

where Ki is a constant depending on the quantizer structure used

for quantizing the ith coefficient, a? is the variance of the ith

coefficient, and ni is the number of bits assigned to the ith

coefficient.

Bit distribution in the transform domain is made so that

the total quantizing noise given by equation (5-11) is minimized.

The total number of bits,

N2-1

E ni
i=O

is determined by considering PCM transmission of the N x N block

of image.

In PCM transmission of an image, the spatial domain sam-

ples are quantized by using M bits per sample. The total number of

bits required to transmit an N x N block of frame is then

B = N 2 M

Typical values chosen for M are seven, four, and two bits per sam-

ple; thus, the total number of bits used is B = 1792, 1024, and
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512, respectively0 In order to evaluate the signal-to-quantization

noise performance of discrete Fourier transform processing of the

same image, the coefficients are assigned bits according to their

variances and the constraint that the average number of bits,

N 2 -1

ni ......
N 2

i=0

must be equal to M.

Three different values are assigned to ni: 7, 4, and 2.

The bit distributions for these three values are given in Tables

5-1, 5-2, and 5-3. In these tabless i't should be noted that there

are two numbers for each spatial frequency term. The number in the

upper half is the number of bits assigned to the real part of the

coefficient; the number in the lower half is the number of bits

assigned to the imaginary part of the coefficient. The lower

halves of four blocks are blocked, since the coefficients corre-

sponding to these spatial frequencies are real. The zero spatial

frequency term, which represents the average brightness of the

image, has the highest variance; therefore, the maximum number of

bits assigned appears in the upper left corner of each table. For

the three cases considered, the maximum numbers of bits are 15,

12, and 10, respectively. The moonscape data has been processed

at three different bit rates using the bit distribution given in

Tables 5-1, 5-2, and 5-3. The resulting images are shown at the

end of this report.

A uniform quantization rule has been used for quantizing

the coefficients. The quantizer spread, QS (defined as the dis-

tance between the minimum and maximum levels of the quantizer) is

given by

QS - 2aU
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Table 5-1. Optimum Bit Distribution in Two-Dimensional
Complex Fourier Domainr u (average seven bits per sample)

v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T Labs

15
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Table 5-2. Optimum Bit Distribution in Two-Dimensional
Complex Fourier Domain

u (average four bits per sample)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5-15
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Table 5-3. Optimum Bit Distribution in Two-Dimensional
Complex Fourier Domain

~ u (average two bits per sample)

v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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where a is the variance of the coefficient, and a is the amplitude

loading factor of the quantizero It is known that a should be de-

pendent on the number of bits assigned to the coefficient in order

to minimize the quantization noise. Hence, the quantizer spread

would be made adaptable. However, as indicated by an example in

Section 6, the resulting additional improvement in signal-to-

quantizing noise ratio is not significant. Therefore, for a given

data rate, a is chosen to be the same for each coefficient. At

various stages of the processing performed in this study, various

values of a have been used.

For PCM processing of the image, the quantizer is uni-

form; hence, the quantizer spread is equal to the full range be-

tween zero intensity (black) and maximum intensity (white).

The error caused by intensity quantization has been com-

puted by comparing the input and output intensity values for each

line of the entire frame. For the discrete Fourier transform, the

error caused by quantization of the coefficients has been computed

by comparing the input and output intensity values over each block

of the entire frame. The results will be given in Section 6.

5.5 TWO-DIMENSIONAL DISCRETE WALSH-HADAMARD TRANSFORMATION
(2D-DWT)

Let f(x,y) represent a two-dimensional square array of

values obtained by sampling the brightness of an image at N x N

points. (The value used for N is 16o) Let F(j,k) be the two-

dimensional Walsh-Hadamard transform of f(x,y). Mathematically,

such a two-dimensional discrete Walsh transform pair is defined

as
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N-1 N-1

F(jk) = 2 E E f(x,y) wal(j,x) wal(ky)
x=O y=O

j,k = 0, 1, . . . , N - 1 (5-12)

N-1 N-1

f(x,y) = E E F(j,k) wal(j,x) wal(k,y)

j=0 k=0

x,y = 0, 1, . . , N - 1 (5-13)

where wal(j,x) and wal(k,y) represent the one-dimensional Walsh

functions in the x and y directions, and j and k are the numbers

of zero crossings of the Walsh functions in the x and y directions,

respectively. The coefficient corresponding to j = k = 0,

N-1 N-1

F(0,0) = E E f(xy)

x=O y=O

yields the average brightness of the N x N block and is identical

to the zero spatial frequency term in the two-dimensional discrete

Fourier domain given by equation (5-5).

The application of the two-dimensional Hadamard trans-

form can be visualized as the comparison (integral of the product)

of the brightness pattern of each 16 x 16 image block with the

various two-dimensional Hadamard basis patterns for N = 16.

Hadamard basis patterns for N = 8 are shown in Figure 5-3. The

coefficient corresponding to the Hadamard basis wal(l,x) wal(0,y)

represents the comparison of the brightness of the left and right

halves of the N x N block. The coefficient corresponding to the

basis wal(0,x) wal(l,y) represents the comparison of the bright-

ness of the lower and upper halves of the image block. Finally,
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wal(7,y)

wal(6,y)

wal (5,y) I _ , +

wal(4,y) L . i 

wal(2,y) t

wal(l,y) h!l
wal(O,y) t 1 11 111 

o X 1

O -: C9 c) P u) 

Figure 5-3. Two-Dimensional T's,'/ah-Hadamard Basis for N = 8
(black areas represent +1/N and whvite areas represent -1/N)
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the coefficient corresponding to the wal(N-l,x) wal(N-l,y) basis

represents the comparison of the image block with an N x N checker-

board design, as shown in the upper right corner of Figure 5-3.

This coefficient is identical to the spatial folding frequency

term, F(N/2,N/2), in two-dimensional discrete Fourier transform

processing.

Since the transformation kernel,

wal(j,x) wal(k,y)

is separable, the transform can be applied as two consecutive one-

dimensional transforms. Therefore, transformation coefficients of

leach block are computed by applying the one-dimensional Walsh

transform, first in the x direction to every line, and then in the

y direction to every column of the first transformation. If the

Hadamard transform in natural order is used in the x direction,

the coefficients should be sequency ordered before it is applied

in the y direction. The resulting N x N coefficients, which rep-

resent the N x N block of image in the Walsh domain, are quantized

by using a certain bit distribution, and the processed image is

reconstructed as two consecutive one-dimensional transforms, first

in the k direction and then in the j direction.

Bit distribution in the Walsh-Hadamard domain is deter-

mined by coefficient variances which are computed by ensemble av-

eraging over the total number of blocks. For the three cases

considered, the total numbers of bits are equal to 1792, 1024,

and 512, resulting in averages of 7, 4, and 2 bits per sample,

respectively. The bit distributions for these three cases are

given in Tables 5-4, 5-5, and 5-6, respectively.

The zero spatial sequency (or frequency) term, F(0,0),

has the highest variance. Therefore, it is assigned the highest

number of quantization levels in order to prevent the appearance
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Table 5-4. Optimum Bit Dist::ibu;tion in Two-Dimensional
Walsh-Hadamazd Domain

(average seven bts per sample)

Ij

0 1 2 -3 4L_- - -1 ... _P - _. 1.

14 11 10 10 10 I 9 9 "9 '? Y 7 7 7

12 1 11 10

11 10 10

10

9

10 9 9 8 3 L
_~ _ :

10 9 9 9

9. 9

8

8 8
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I!

9 1 2 / : 1 7

9 I 3 6 ': 7

5 ' 7

7 7

7 7

9I 13 14 15

T
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7 8 L7

7 7 I7

8

7

717 171 6

I 13 7 7 7 7 7 6
- I-I -

! 6I0 7 " 6 6 7 7 1 7 16

10 9 9 8 8 a :ai ? : 6 -6 6 6 7 610 9 9 8 8 7 _ _ _ ,.j
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8 8 8 7 77 2? '' .: 6 6 6 6 5 5

8 8 8 7 77 I 7 : 3 6 6 6 6 5
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Table 5-5. Optimum Bit Distribution in Two-Dimensional
Walsh-Hadamard Domain

(average four bits per sample)

r
j

n 1* 2 3 4 5 h R 9 In 11 12 13 14 15k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

11 8 7 ? 6 6 6 6 4 4 4 4 5 5 5 5

9 8 7 7 6' 6 6 5 4 4 4 4 4 5 $ 4

8 7 7 6 5 6 6 5 3 4 4 4 4 4 4 4

8 7 6 6 5 5 5 5 3 4 4 4 4 4 4 3

7 6 6 6 5 5 5 4 3 3 4 4 4 4 4 3

7 6 6 6 5 5 5 4 3 3 3 4 4 4 4 3

7 6 6 5 5 5 5 4 3 3 3 3 3 3 4 3

6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2

5 5 5 4 4 4 4 3 2 3 3 3 3 3 3 2

5 5 5 4 4 4 4 3 2' 3 3 3 3 3 2 2

5 5 5 4 4 4 4 3 2 2 3 3 3 3 3 2

6 5 5 4 4 4 4 3 2 2 3 3 3 3 2 2

6 5 5 4 4 4 4 3 2 2 2 3 3 3 3 2

6 5 5 4 4 4 4 3 2 2 2 2 2 3 2 2

6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2
~' ~ ' , .

5 4 4 3 3 3 3 2 1 1 1 2 2 1 1 1
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Table 5-6. Optimum Bit Distribution in Two-Dimensional
Walsh-Hadamard Domain

(average two bits per sample)

0 1 2 3 4 5 6 7 ' 9 10 11 12 13 14 15

0 9 6 5 5 4 4 ~ ~ 2 2 2 2 3 3 .3 3

I 7 6 s 5 4 4 ~j ~ 2 2 2 2 2 3 2~2 6 .s s 4 3 4 3 ~ i 2 2 :, 2 2 :, 2
( .....
t3 6 5 4 4 3 3 3 3 1 2 2 2 2 2 2 .!.

4 5 4 4 4 3 2 I I. 2 2 2 2 2 13t3
'

t ....5 5 4 4 4 3 3 3 2 I 1 ,L 2 2 2 2 I.

6 5 4 4 3 3 3 3 2 1 I I I 1 I I 1

7 4 4 3 3 2 2 2 2 I I I 1 I I I 0

g 3 3 3 2 2 2 2 I 0 J. I I I I 0 0

9 3 3 3 2 2 2 2 1 0 1 ! I I 1 0 0

10 3 3 3 2 2 2 2 1 0 0 J. I I 1 I 0

11 4 3 3 2 2 2 2 1 0 0 I I I 1 0 0

12 4 3 3 2 ] 2 2 2 1 0 0 0 1 I I 0 0

13 4 3 3 2 2 2 2 1 0 0 0 0 - 0 0 0 0

14 4 3 2 2 I I I 0 0 0 0 01 t 0 0 0
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of block structure in the reconstructed image. The number of bits
assigned to F:(O,O) appears in the upper left corner of each table.

For the three cases considered, the numbers of bits assigned to

F(0,0) are 14, 11, and 9 bits, respectively.

A uniform quantization rule has been used for quantizing

the coefficients. As in the case of two-dimensional discrete

Fourier transform processing, the amplitude loading factor of the

uniform quantizer is chosen to be a constant. The error caused by

quantization of the coefficients has been computed by comparing

the input and output intensities over each block of the entire

frame. The results will be given in Section 6.

5.6 TWO-DIMENSIONAL DISCRETE KARHUNEN-LOEVE TRANSFORM
(2D-KLT)

To obtain a two-dimensional discrete Karhunen-Loeve

transform of an N x N block of image, the N x N array of sampled

brightness values f(x,y) of the block must be expanded in terms

of the two-dimensional eigenfunction Oj,k(x,y); i.e.,

N-1 N-1

f(x,y) = F(j,k) *j k(xy)
j=O k=O

x,y = 0, 1, . . . , N - 1 (5-14)

where N2 is the number of eigenfunctions that is necessary to ad-

equately represent the random image signal, f(x,y). The expansion

coefficients, F(j,k), are the eigenvalues of the N2 x N 2 spatial

covariance matrix, C(xl,x2 ,yl,y2) of f(x,y), where xl, x2, Y1 ,
and Y2 are spatial variables. The form of the eigenvectors

Oj,k(x,y) depends on the statistical nature of the random signal;
in general, it is difficult to describe their exact analytical

form.
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If all of the eigenvectors are used in the expansion,

then the mean-square error between the original f(x,y) and that

of equation (5-14) is zero. If only N1 < N 2 eigenvectors are used,

then the mean-square error is given by

Nl-1

N 2 i
i=0

where C(O,O,O,O) is the value of the spatial domain autocorrelation

function at the origin, and a? are the variances of the transform

domain coefficients.

The orthogonal transform which results in the greatest

reduction of the mean/usquare error in equation (5-15) is the

Karhunen-Loeve transform, in which the eigenvectors are arranged

to correspond to the eigenvalues in descending order. The vari-

ances of the coefficients are the eigenvalues of C(xl,x2 ,y 1, y2 ).

When N is large, computation of the eigenvalues of the

N 2 x N 2 spatial covariance matrix becomes formidable. However,

if the two-dimensional autocorrelation function is separable in

the x and y directions, then the Karhunen-Loeve transform can be

computed as two successive one-dimensional linear transformations

in the x and y directions. The transforms for the x and y direc-

tions are based on the horizontal and vertical correlations of

the image. If the correlations in the x and y directions are the

same for a particular image, then a two-dimensional KLT is obtained

by using the KLT matrix based on the x-dimension covariance matrix

to transform all of the rows of the image block, and by then per-

forming the same transform in the y direction using the same matrix.

The N 2 coefficients thus obtained are uncorrelated; their variances

are given by the products of the eigenvalues of the covariance ma-

trices representing the correlations in the x and y directions.
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The application of KLT thus requires the computation of autocorre-

lation functions Rx(xI,x2) and RY(yl,y2).

Experimental evidence indicates that, for most imagery

data, a reasonable model of the one-dimensional autocorrelation

function is 42,43

R(x1,x2) = R(O) e-
a x l

- x
1 2 1 (5-16)

which is equivalent to representing the signal as a first-order

Markov process. In equation (5-16), R(O) = as is the variance of

the signal, and a is a constant. As a changes, the mathematical

model will fit images with different average detail.

In the discrete case, the sampled imagery signal can be

modeled as a stationary first-order Markov sequence:

Sn = P Sn-l + in-l (5-17)

where

= white Gaussian input, N(O,a2)

s = output, first-order Markov process

p = correlation coefficient, jPl < 1

The autocorrelation sequence corresponding to equation (5-17) is

R(k - j) = R(O) pIk - j l I k - j = 1, 2, 3, . . . (5-18)

where

= a2 (5-19)

1 - p2

is the variance of the signal sequence. Comparison of equations

(5-16) and (5-18) yields
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al = -ln p (5-20)

in order to fit the continuous and discrete Markov process models

with the same picture detail.

For most imagery data, there is a high correlation be-

tween two consecutive samples in the spatial domain.4 ' 4, 5 The

correlations in the horizontal and vertical directions are not

necessarily the same. This requires a two-dimensional model given

by

R(X 1x 2,yy 2 ) = R(O,O)[e- IaXl-X2 YlY2i] (5-21)

The normalized covariance matrix of the first-order

Markov process is given by

E{Sk}
fsksjl =_ 0 k-jI

f S 2 

, k,j = 0, 1, 2, . . . , N - 1 (5-22)

which is a Toeplitz matrix of a very special form:

P P2

1 P

P 1

pN-l pN-l

1

P

2

pN-l

C s =
5

PN-2

(5-23)

1 p

P 1
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The Karhunen-Loeve transform matrix is the transpose of

the matrix which diagonalizes the covariance matrix. Thus, the

rows of the KLT matrix are the eigenvectors of the process. The

eigenfunctions are ordered so that corresponding eigenvalues de-

crease in value. That is,

A0 > k 1 > A2 . .N-1 (5-23)

The normalized autocorrelation sequence p k- jl is shown

in Figure 5-4 for various values of p. These values have been

used to form the covariance matrix and to compute eigenvalues and

eigenvectors. The eigenvalues XA, A2 , . . N are shown in

Tables 5-7 and 5-8 for various N. In general, as N increases, the

value of A increases monotonically. However, if p is small (e.g.,

p = 0.5), the value of X saturates as N increases. It should also

be noted that

N-1

E Xi = N (5-24)

i=O

The sinusoidal but nonharmonic nature of the eigenfunc-

tions of a first-order Markov process was first reported by

Davenport and Root.2 2 Their results can be used to compute the

eigenfunctions of the first-order continuous Markov process for

various amounts of correlation. This involves finding the roots

of two transcendental equations.46 In the discrete case, the

eigenfunctions of the first-order Markov process are samples of

cosine and sine functions.47 Nevertheless, since these sinusoidal

functions are not harmonically related, the Karhunen-Loeve and

discrete Fourier transforms are not identical even for large N.*

*N = 2 is the degenerate case in which KLT is identical to discrete
Fourier, Walsh, and Haar transforms, no matter what the statisti-
cal nature of the process is.
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Figure 5-5 shows the eigenvectors of the Markov process

for N = 16 and N = 8. All eigenvectors have been normalized to

have unity magnitude. As p increases, the first eigenvector,

which corresponds to the largest eigenvalue, approaches the ave-

rage value of N samples. Higher index eigenfunctions approximate

a set of periodic sine and cosine functions. Their nonharmonic

nature is evident when they are compared with the harmonic sinu-

soidal functions shown in the last column of Figure 5-5. For ex-

ample, 4l has one-half cycle in the unit interval, 02 has one

cycle, and 03 has one and one-half cycles.

The horizontal and vertical autocorrelation functions,

Rx(T)/Rx(O) and Ry(T)/Ry(O), respectively, have been computed for

the moonscape slide as an ensemble average of autocorrelation

functions over the lines and columns of the image frame. These

functions have been shown in Figure 5-4.

The covariance matrices Cx(T) and Cy(T) are formed by

using a method which is similar to that used for the one-dimensional

case, and their eigenvalues and eigenvectors are computed. The

eigenvalues are shown in Table 5-9 and the eigenvectors of Cx(T)

are shown in Figure 5-5. The eigenvectors Cy(T) are not shown,

since they have almost the same form. Bit distribution is made in

accordance with the eigenvalues.

As in the Walsh-Hadamard and Fourier cases, the moon-

scape slide has been processed at three different bit rates using

the one-dimensional Karhunen-Loeve transform matrix based on the

horizontal correlations for both horizontal and vertical trans-

forms. Tables 5-10, 5-11, and 5-12 show the bit distributions

in the transform domain. The resulting processed images appear

at the end of this report.

As a further experiment, the moonscape slide has been

processed at a rate of two bits per picture element by using the

one-dimensional KLT matrix based on horizontal correlations for
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horizontal transform and the transform matrix based on vertical

correlations for vertical transform. The resulting bit distri-

bution is the same as that of Table 5-12. The resulting signal-

to-quantizing noise ratio is the same as it was when the same

transform matrix was used for both directions.

Table 5-9. Eigenvalues of Spatial Autocovariance
Matrices Representing the Correlations in the

x and y Dimensions for Moonscape Data

5-34

Eigenvalues Eigenvalues
j or k of Cx(T)), of C(T),

j _ Xk

0 14o6334 14.1362

1 0.8320 0.9052

2 0.2993 0.4393

3 0o1156 0.2150

4 0°0567 0.1249

5 0.0287 0.0754

6 00148 0.0464

7 0°0077 0.0266

8 0.0042 0.0150

9 0.0022 0.0080

10 0o0015 0.0043

11 0o0012 0.0023

12 0.0009 0.0011

13 0.0007 0.0004

14 0.0006 0.0002

15 0.0005 0.0001
.L =:_ = ._ .L

_r -,PI
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Table 5-10. Optimum Bit Distribution in Two-Dimensional
Karhunen-Loeve Transform Domain

(average seven bits per sample)

r Ij
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 13 12 11 10 10 9 9 8 8 7 7 6 6 5 5

1 13 12 11 11 10 10 9 9 B 7 ? 6, 6 6 5 5

2 12 12 11 11 10 10 9 8 8 7 7 6 6 5 5 5

3 12 11 11 10 10 9 9 8 8 7 7 6 6 6 5 5

o

4 11 11 11 10 10 9 9 8 8 7 7 6 6 5 5 5

5 11 11 10 10 9 9 8 9 8 7 7 6 6 5 5 5

$ 10 10 10 10 9 9 8 8 7 7 6 6 5 5 5 5

7 10 10 10 9 9 $ 8 O 7 ? 6 6 5 5 5 4

8 10 9 9 9 9 8 8 ? 7 7 6 6 5 5 4 4
o

9 9 9 9 9 8 e ? ? ? 6 6 5 5 5 4 4

10 9 8 8 8 8 7 7 ? 6 6 6 5 5 5. 4 4

11 8 8 8 8 7 ? 7 6 6 6 5 5 5 4 4 4

12 7 7 7 7 7 7 6 6 6 5 5 5 4 4 4 4

13 7 7 7 7 7 6 ; 6 5 5 5 4 4 4 4 4
i,,

14 7 7 6 6 6 .6 6 5 5 5 5 4 4 4 4 4
[

15 6 6 6 6 6 6 $ ~ 5 4 4 4 4 4 4 4
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Table 5-11. Optimum Bit Distribution in Two-Dimensional
Karhunen-Lodve Transform Domain

(average four bits per sample)

j

0 1 2 3 4 5 -6 7 8 9 10 11 12 13 14 15

0 12 10 9 8 7 ? 7 6 6 5 5 4 4 3 2 2

I 10 9 8 8 ? 7 6 6 5 4 4 3 3 3 2 2

2 9 9 8 8 7 ? 6 5 5 4 4 3 3 2 2 2

3 9 8 8 7 7 6 6 5 5 4 4 3 3 3.. 2
, ,,!2

4 8 8 8 '7 7 6 6 5 5 4 4 3 3 3 2 2

5 8 8 7 7 6 6 5 5 5 4 4 3 3 2 2 2

6 "7 ? 7 7 6 6- 5 '5'~ 4 4 3 3 2 2 2 2L

7 7 '7 7 6 6 5 5 5 4 4 3 3 2 2 2 1
.... , ,,, If

8 7 6 6 6 6 5 5 4 4 4 3 3 2 2 2 1

9 6 6 6 6 5 5 4 4 4 3 3 2 2 2 I 1

10 6. 5 5 5 5 4 4 4 3 3 3 2 , 2 2 i 1

11 5 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1

12 4 4 4 4 4 4 3 3 3 2 2 2 I i I 1

13 4 4 4 4 4 3 3 3 2 2 2 I '1 1 I 1
· ,,, ,

14 4 4 3 3 3 3 3 2 .2 2 'j 2 I 1 I I 1

15 3 3 3 3 3 3 2 2 2 i I i i i i I
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Table 5-12. Optimum Bit Distribution in Two-Dimensional
Karhunen-Loave Transform Domain

(average two bits per sample)

_j

0 2 3 4 5 
0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

7 8 9 10 11 12 13 14 15

5-37/5-38

10 7 7 6 5 5 4 3 3 2 2 1 1 1 0 0

B 7 6 6 5 4 4 3

7 7 6 5 5 4 4 3 3 2 2 1 1 0 0 0
7 6 6 5 4 4 3 3 2 2 1 1 0 0 0

76 6 5 54 4 4 3 3 2 2 1 1 0 0 
…I--~~~~~~~~~~ 

6 6 5 5 4.4 3 3 2 2 1 1 ilo 0

5 5 5 4 4 4 3 3 2 2 1 1 0000

5 5 4 4 4 3 3 2 2 1 1 1 

-3 2 

4. 4 4 4 3 3 3 2 2 1' 1i 00 0 0 0

.4 4 4 3 3 3 2 2 r 1 1 0 0 0 0 0

3 3 3 3 3 2 2 1 1 1 0 '0 0 '0 0 0

3 3 3 3 2 2 2 1 1 1 0 0 0 0 0 0

2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0

2 2 2I 1i 1 1 1 0 0 0 0 0 0 0 0

1i 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 01~~~~0 0 00 
- - - - - - - . - _

A 'A--_ -
t;OM'
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6. ORTHOGONAL TRANSFORM PROCESSING OF IMAGES

6.1 GENERAL

A moonscape slide has been scanned by a flying spot

scanner to produce an array of L x L (L = 512) uniformly spaced

samples of image brightness. Next, a general-purpose computer

has been used to perform spatial domain or transform domain pro-

cessing on this array of data. Then, the processed image has

been reconstructed by the flying spot scanner.

Orthogonal transformation processing has been accom-

plished on small N x N (N = 16) blocks. Thus there are p = (512

x 512)/(16 x 16) = 1024 such blocks. The orthogonal transform of

each block has been computed to obtain the coefficients which

represent the image in the transform domain.

6.2 FUNDAMENTALS OF THE PROCESSING METHOD

Thresholding magnitudes of the coefficients in the

transform domain makes bit-rate reduction possible. That is, the

energy of each coefficient is checked against a threshold; the

coefficient is transmitted if its energy is above the threshold

and not transmitted if its energy is below the threshold. However,

this method appears to be overly crude, as shown for the discrete

Fourier transform in the supplementary report no. 1 on image

processing.

For high-quality image transmission, every coefficient

must be considered in terms of its importance in image reconstruc-

tion. Since the amount of information contained in each coeffi-

cient is proportional to its energy, bit distribution and hence
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allotment of the quantization levels should be made in accordance

with the variances of the coefficients. This procedure also mini-

mizes the rms error at any given bit rate, as shown in Section 4.2.

Accordingly, the coefficients are quantized by using bit

distributions based on their variances. At the receiving side,

the spatial domain samples are reconstructed from the quantized

coefficients by using an inverse orthogonal transformation.

In PCM transmission of an image, the spatial domain sam-

ples are quantized by using M bits per sample. The total number

of bits required to transmit an N x N block of frame is then

B = N 2 M

Typical values chosen for M are seven, four, and two bits per sam-

ple; thus the total numbers of bits used for N = 16 are B = 1792,

1024, and 512, respectively. In order to evaluate the signal-to-

quantization noise performance of the orthogonal transform pro-

cessing on the same image, the coefficients are assigned bits

according to their variances and the constraint that the total

numbers of bits are 1792, 1024, and 512, resulting in averages of

seven, four, and two bits per picture element, respectively. In

Section 5, the bit distributions for these three cases were given

in tables for each transform method.

6.2.1 Coefficient Quantization

In order to obtain the maximum signal-to-quantizing

noise ratio, the amplitude loading factor of the uniform quantizer

in the transform domain should be dependent on the number of bits

assigned to the coefficients. If a? is the variance of the ith

coefficient, the quantizer spread (defined as the distance between

6-2



COMSAT Labs Technical Report
CL-TR-5-71

minimum and maximum levels of the quantizer) is given by

QS = 2aiai (6-1)

where ai is the amplitude loading factor of the ith quantizer.

The step size of the quantizer is

Qs 2aiai
2ni 2 ni (6-2)

If there is a large number of steps, then the mean-square

quantizing noise error is one-twelfth of the square of the step

size. 4 8 That is,

2 202

0_ __ 1 aiai(6-3)
12 3 2m i

When there is a finite number of steps, 2 ni , the expression for the

mean-square quantizing noise error is more involved, since the

probability distribution of the coefficients should be considered.

The probability distribution of the coefficients can be assumed to

be Gaussian, since the coefficients are obtained from a linear

combination of spatial domain samples:

P(x) = 1 exp(-x2/2a.) (6-4)

2/ cHi

The exact analytical expression for quantizing noise

power is known for stationary Gaussian signals .49 The quantizing

noise power, NQ, which is composed of two parts, granular noise

power, NG, and overload noise power, No, can be computed as follows:
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NG 2 a2i
_ erf(ai) (6-5a)

ai 3 22ni

- = (1 + oa)[l - 2 erf(cai)] - ct e (6-5b)

i 

NQ = NG + NO (6-5c)

where erf(ai) is the error function.2 3

For large ai, equation (6-5a) yields equation (6-3).

This term is what is generally known as quantizing noise because,

when a suitable value of ai is used, the overload noise is less

than the granular noise and is therefore ignored.

Equation (6-5) can be used to compute NQ/ai and the

signal-to-quantizing noise ratio:

(S/NQ)i = 10 log, 1 NQ/

for various n i . Figure 6-1 shows the (S/NQ)i values versus a
i

for

various n i . The optimum ai, which maximizes the signal-to-

quantizing noise ratio determined from these curves, is given in

Table 6-1.
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Figure 6-1. Signal-to-Quantizing Noise vs Amplitude Loading
Factor, a, for Various Bit Assignments
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Table 6-1. Optimum Amplitude Loading Factor of the
Quantizer in the Walsh-Hadamard Transform Domain

Number of Amplitude Loading Factor for
Bits per Sample the Uniform Quantization of
Assigned to the the ith Coefficient (ai)
ith Coefficient

(ni) Optimum Value Value Used

' 1 1.25 1.5

2 1.8 2.0

3 2.1 2.5

4 2.5 3.0

5 3.0 3.4

6 3.3 3.8

7 3.7 4.1

8 4.0 4.4

9 4.3 4.7

10 4.5 4.9

11 4.7 5.1

PCM IMAGE PROCESSING

The moonscape image has been processed by PCM at three

different bit rates: seven, four, and two bits per sample. Figures

6-2a, 6-2b, and 6-2c are the resulting pictures for each of these

cases. Uniform quantizing with a mid-riser was employed in each

case, since this prevented the loss of one quantizing step. The

quantizing step size was referenced to the full black-to-white

range observed at the flying spot scanner output. For our computer,

this corresponded to 215.

For each PCM bit rate, the error caused by quantization

was determined. This was used as a basis for comparing the perfor-

mance of the various transformations at the same average bit rates

6-6
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PCM, M=7 bits/sample 

b. PCM, M=4 bits/sample 

c. PCM, M=2 bits/sample 

Figure 6-2. PCM Processed Images 
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in terms of reduction in quantization error. The quantizing noise

was determined by computing the rms error difference between the

source picture elements and the reconstructed picture elements.

Figures 6-2a, 6-2b, and 6-2c are the pictures resulting

from PCM processing at rates of seven, four, and two bits per sam-

ple, respectively. (A sample is equal to a picture element.)

Processing at seven bits per sample (Figure 6-2a) produced a very

high-quality picture. Subjectively, there was little difference

between this picture and the original picture. The quantizing

noise variance measured for this case was 5.43 x 103. This is

53 dB below the peak picture element value of 215.

Figure 6-2b shows the result of PCM processing using

four bits per sample. Contouring is becoming apparent (note the

medium-sized crater). The quantizing noise variance in this case

is 3.09 x 105, which is 45 dB below the peak range value of 215.

The PCM result for two bits per sample is given in Fig-

ure 6-2c. The quantizing noise variance was 5.90 x 106, or

22.5 dB below the peak value of 215. Careful observation shows

the loss of small details such as the smallest craters that were

quite apparent in the seven- and four-bit-per-sample cases. There

is also a "wash-out" effect because of the loss of the black and

white extreme values. This could have been offset by rescaling

to conform to the full black-to-white range of the flying spot

scanner; however, doing so would not have improved the resolution.

6.4 FOURIER TRANSFORM IMAGE PROCESSING

Fourier processing of the moonscape image at an average

of seven, four, and two bits per sample is shown in Figure 6-3.

For the seven-bit-per-sample processing, the coefficient bit as-

signments shown in Table 5-1 were used. The amplitude loading

factor was a = 8 for all coefficients. The quantizing noise was
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a. DFT, Average 7 bits/sample, a=8 

b. DFT, Average 4 bits/sample, a=4 

c. DFT, Average 2 bits/sample, a=4 

Figure 6-3. 2D-DFT Processed Images 
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56.9 dB below the peak value of 215, or 3.1 dB less than the value

computed for seven-bit PCM processing. Subjectively, the picture

enhancement due to the decreased quantizing noise is less readily

apparent than in the seven-bit PCM picture.

Next, Fourier processing was performed at an average of

four bits per sample. The bit assignments used are listed in

Table 5-2. Two values of the amplitude loading factor, a = 4 and

a = 8, were examined. The quantizing noise variances were 39 dB

for a = 4 and 37.4 dB for a = 8. Figure 6-3b is the picture pro-

duced for a = 4. When compared with the picture produced by four-

bit-per-sample PCM processing, this picture shows considerable

improvement, especially with regard to the elimination of

contouring.

Fourier processing was also performed at two bits per

sample using the bit assignment given in Table 5-3 and for

a = 2, 4, 6, and 8. These values resulted in quantizing noise

variances of 27.5, 32.3, 28.6, and 25.8 dB, respectively, below

the peak value of 2 I5. The best result, shown in Figure 6-3c,

was obtained for a = 4 and is 9.8 dB less than the quantizing

obtained for PCM processing at the two-bit-per-sample rate. When

compared with the result of two-bit-per-sample PCM processing

shown in Figure 6-2, Figure 6-3c reveals significantly improved

resolution of the fine detail and no contouring. However, a

block structure, which may possibly be removed by using slightly

different processing strategy (such as overlapping of processing

blocks), is apparent. It will be seen later that this block

structure is less apparent in the Hadamard case and almost dis-

appears in the Karhunen-Loeve case.
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6.5 HADAMARD TRANSFORM IMAGE PROCESSING

Hadamard processing using average bit rates of seven,

four, and two bits per sample has been performed by using the

same moonscape picture processed by the PCM and Fourier methods.

The method used was presented in Section 5.5. The results of the

Hadamard image processing are shown in Figure 6-4.

Figure 6-4a was obtained for an average rate of seven

bits per sample. The bit distribution used is shown in Table 5-4

and the value of a was eight. The computed variance in this case

was 54.6 dB below the peak of 215, which is 1.6 dB less variance

than was observed for PCM processing. As is seen, the processed

picture possesses excellent quality.

Figure 6-4b is the picture obtained at an average of

four bits per sample. In this case, the computed quantizing noise

variance was 38.1 dB below the peak value of 215, which is 3.1 dB

less than that observed for the PCM case. When compared with

the PCM case of Figure 6-2, this picture shows that contouring has

been eliminated. When it is compared with the picture for Fourier

processing, it can be seen that there is little perceptible differ-

ence between the two.

An alternative method of Hadamard processing at an aver-

age rate of four bits per sample was also investigated. This con-

sisted of assigning new optimum values of a (given in Table 6-1)

for each of the bit assignments. This procedure resulted in a

quantizing noise variance that was 39.1 dB below the peak value of

215, 4.1 dB less than the PCM processing variance, and 1 dB less

than the variance obtained when a value of a = 4 was used for all

of the bit assignments for four-bit-per-sample Hadamard processing.

Figure 6-4c is for Hadamard processing at an average

rate of two bits per sample. The calculated quantizing noise

variance for a = 4 was found to be 30.4 dB below the peak value of
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Figure 6-4. 2D-DWT (Had 

COMSAT Labs 

a. Hadamard, Average 7 bits/sample, a=8 

b. Hadamard, Average 4 bits/sample, a=4 

c. Hadamard, Average 2 bits/sample, a=4 

r d ) P rocessed Images 
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215. This is 7.9 dB less quantizing noise variance than was cal-

culated for PCM processing. Examination of the picture shows that

most of the fine detail which was lost in two-bit-per-sample PCM

processing was retained. Comparison with Figure 6-3 shows about

the same amount of resolution for both the Hadamard and Fourier

methods. As in the Fourier case, some block structure is apparent.

Also, there is a noticeable amount of snow-like noise.

6.6 KARHUNEN-LOEVE TRANSFORM IMAGE PROCESSING

Karhunen-Loeve processing using average bit rates of

seven, four, and two bits per sample has been performed using the

same moonscape picture processed by using the PCM, Fourier, and

Hadamard methods. The method used was presented in Section 5.6.

The Karhunen-Loeve transformed images are shown in Figure 6-5.

Figure 6-5a was obtained for an average bit rate of

seven bits per sample. The bit distribution used is shown in

Table 5-10, and the value of a was 8. The quantizing noise vari-

ance was 62.9 dB below the peak value of 215, which is better than

that produced by any of the other processing methods and 9.9 dB

less than that computed for PCM processing. The picture quality,

as should be expected, was excellent.

Figure 6-5b was obtained for an average of four bits per

sample and a = 4. Its computed quantizing noise variance was

39.8 dB below the peak value of 215, which is 4.8 dB better than

for the PCM case. It is believed that some additional improvement

may be achieved by varying a. The resulting picture is similar in

appearance to those obtained for the Fourier and Hadamard

transformations.

Figure 6-5c is for Karhunen-Loeve processing using an

average rate of two bits per sample and a = 4. The bit
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o._ KLT, Average 7 bits/sample, a =4 

b. - KLT, Average 4 bits/sample, a=4 

c . KLT, Average 2 bits/sample, a=4 

Figure 6-5. 2D-DKLT Processed Images 
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distribution used for this case is shown in Table 5-12. The cal-

culated quantizing noise variance for a = 4 was found to be 36.2

dB below the peak value of 215. This quantizing noise is 13.7 dB

less than that produced by two-bit-per-sample PCM processing and

is equivalent to that produced by four-bit PCM processing.

As will be seen by comparing the processed pictures, how-

ever, the two-bit-per-sample Karhunen-Loeve transform does not pro-

duce the perceptible contouring which occurs as a result of four-

bit-per-sample PCM processing. The reason for this is quite

apparent. In PCM processing, there is no interpolation among the

image samples; i.e., each is presented exclusively. The boundaries

along which quantizing thresholds are crossed become perceptible

even for relatively small quantizing step sizes. On the other

hand, for the transform processed picture, each picture element

appearing in the reconstructed image is the weighted average of

N two-dimensional eigenfunctions. This results in interpolation

of the picture element values in the reconstructed image and

virtually removes contouring at low bit rates. It should be fur-

ther noted that the block structure that was apparent in the

Fourier case is almost totally removed in the Karhunen-Loeve case.

Also, there is much less snow-type noise than was observed in the

other cases.

The eigenfunctions used for processing were identical in

the horizontal and vertical directions. Actually, the correla-

tions in the x and y directions differed by a small amount, as

shown in Figure 5-4. Processing using nonidentical eigenfunctions

(derived from the preceding correlation functions) in the x and y

directions did not significantly enhance the reconstructed picture

and is therefore not shown.
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6.7 SUMMARY OF ORTHOGONAL TRANSFORM TECHNIQUES FOR
IMAGE PROCESSING

Image processing using PCM, 2D-DFT, 2D-DHT, and 2D-KLT

was performed on a moonscape slide provided by NASA/MSC at bit

rates averaging seven, four, and two bits per sample. The image

was resolved into 512 x 512 picture elements using a flying spot

scanner. For transformation processing, this array was further

divided into 1024 16 x 16 element subarrays. The pictures re-

sulting from the various processing methods were shown in Figures

6-2, 6-3, 6-4, and 6-5.

To quantitatively assess the results obtained, the rms

difference between preprocessed and postprocessed values of array

elements was computed. This was designated as the quantizing noise

variance. PCM processing was used as a basis for comparison of

quantizing noise variance and, for each transformation processing,

the reduction in quantizing noise (or improvement in signal-to-

quantizing noise ratio) achieved for each of the bit rates was

determined.

The results obtained for Fourier processing (2D-DFT)

are summarized in Table 6-2. Note that, in some cases, the value

of the amplitude loading was modified to experimentally determine

an optimum value. Thus, at an average rate of four bits per sam-

ple, an amplitude loading factor of 4 produced a better result

than a value of 8, and, for a rate of two bits per sample, a value

of 4 also produced the best result.

Table 6-3 is a comparison of the results for all of the

processing methods using near-optimum amplitude loading factors.

This table shows that the amount of improvement in S/NQ increases

at low bit rates for each transformation method. It also shows

that the Karhunen-Loeve transformation produces the best results,

the Fourier transformation produces the next best results, and

the Hadamard transformation produces the worst results. All of

the transformations produce better results than PCM.
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Table 6-2. Signal-to-Quantizing Noise Ratio Improvement (AQ)
of 2D-DFT Over PCM as Applied to Moonscape Slide

Average Number of Amplitude Loading
Bits per Sample Factor (c) of the Improvement in
Used in the Quantizer in the S/N (Q) Over

Transform Domain Transform Domain

2 5.0

4 9.8
2

6 6.1

8 3.3

4 4.0
4

8 2.4

7 8 3.9

Table 6-3. Signal-to-Quantizing Noise Ratio Improvement of
Two-Dimensional Orthogonal Transforms Over PCM

as Applied to Moonscape Slide

Average Number of Amplitude Loading Improvement in S/NQ Over PCM
Bits per Sample Factor of the (dB)
Used in the Quantizer in the

Transform Domain, Transform Domain, Fourier Karhunen-
Fourier Hadamard

HT (xi Loeve

2 4 9.8 7.9 13.7

4 4 4.0 3.1 4.8

7 8 3.9 1.6 9.9

A very important property of transform processing that is

not revealed in the S/NQ improvements is the subjective effect of

contouring. It is basically true of all of the transformation pro-

cessing methods that, at low bit rates, the effect of contouring is

virtually eliminated. This is because each image element in the

reconstructed transformed image is the weighted average of N
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two-dimensional orthogonal functions; the interpolation provided

thereby eliminates the contouring that would occur in PCM pro-

cessing at the same bit rate.

Because of the rather good results observed in this

study, the use of orthogonal transformation processing of images

should be studied further. The Karhunen-Lobve transformation is

very effective, but its implementation is the most complex. How-

ever, this should not eliminate it from serious consideration

since the cost of digital processing methods is rapidly decreasing.

The Hadamard transform method is the simplest to implement and

certainly warrants continued effort, especially since it signifi-

cantly reduces contouring at low bit rates.
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